
Tabular data analysis with R and Tidyverse:
Environmental Health

Jean-Yves Sgro, PhD1 KristenMalecki, PhD, MPH2

Last updated: 07 July, 2022

1Biochemistry Dept., jsgro@wisc.edu
2Population Health Sciences, kmalecki@wisc.edu

mailto:jsgro@wisc.edu
mailto:kmalecki@wisc.edu

2020 Summer Research Opportunities Program (SROP) for sophomores
University of Wisconsin-Madison
MadisonWI 53706 USA

———————–

©2020-2022 Jean-Yves Sgro

CC BY-NC 4.0
This work is licensed under a Creative Commons
“Attribution-NonCommercial-ShareAlike 3.0 Un-
ported” license.
———————–

Cover: Pixabay.com image by Bessi

https://creativecommons.org/licenses/by-nc-sa/3.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/3.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/3.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/3.0/deed.en

List of Figures

1.1 Adding packages is like adding gears for a more powerful engine. 3
1.2 NHANES logo. 4

2.1 R objects are containers hodling data, variables, tables, etc. . . . 9
2.2 R holds workspace, objects in RAM. 10

3.1 The 4 quadrants of RStudio interface. 12
3.2 Adding comments to scriptsmakes them easier to sharewith oth-

ers, or your future self. 15
3.3 Files Tab shows files and path. 16
3.4 More menu provides easy navigation to working directory. . . . 17

4.1 The assignment operator <- is used to create R objects. 20
4.2 A jar as a metaphor for an R objects. 21
4.3 R objects are conveniently listedwithin the *Environment* Tab in

RStudio. 22
4.4 A dozen often referred to eggs. 24
4.5 Function plot() automatically generated scatter plot. 41
4.6 Split screen plots. 42
4.7 Function plot() automatically generated boxplot. 43

5.1 Datase ‘airquality‘ is a daily record of daily air quality measure-
ments in New York, May to September 1973. 46

5.2 Default boxplot of airquality dataset. 53
5.3 Comparing the plot of 2 subset formats. 54

3

4 LISTOF FIGURES

5.4 Boxplot of temperature of airquality dataset. 55
5.5 Boxplot of temperature as a function of the month of

airquality dataset. 56
5.6 Boxplot of temperature as a function of the month of

airquality dataset with simple colors. 57
5.7 Using levels to automatically color boxplot. 58
5.8 A scatter plot can show trend. 59
5.9 Addingmonth levels both as color and number plotted. 60
5.10 Addingmonth levels both as color and number plotted. 61
5.11 26 pch geometric symbols for plots are numbered 0 to 25. Default

is number 1: open circle. 62
5.12 Adding the simple regression line on the scatter plot. 63
5.13 qplot version of Temperature vs Month. 65
5.14 Better qplot version of Temperature vs Month. 68
5.15 Scatter plot for Ozone vs Temperature. 70
5.16 Scatter plot for Ozone vs Temperature, linear regression for each

month. 71
5.17 Scatter plot for Ozone vs Temperature. Linear regression for all

months. 72
5.18 Scatter plot for Ozone vs Temperature. Linear regression for all

months. 73

6.1 Perfluorooctanoic acid (PFOA) is used worldwide as an industrial
surfactant in chemical processes and as amaterial feedstock, and
is a health concern and subject to regulatory action and voluntary
industrial phase-outs. 78

6.2 Finding NHANES 2015-2016 data. 81
6.3 Summary of 4 attempts . 85
6.4 PFAS_I boxplot with log values for odd columns and rotated labels. 87
6.5 PFAS_I histogram for summedvalues in column21 labeled LBXM-

FOS. 89
6.6 Creating multiple histograms with one command 90
6.7 PFAS_I boxplot with log values for 4 columns. 93

LISTOF FIGURES 5

6.8 PFAS_I boxplot with log values for 10 data columns. 94
6.9 Combining NHANES data into a single file is necessary for de-

tailed analysis. 96
6.10 We have combined NHANES data for each individual from 2 sep-

arate files. 98

7.1 Boxplot and histogramof log10 transformation of PFAS sumdata
after creatinine adjustment. 106

7.2 Histogram of BMI values and log10 values. 108
7.3 Histogram of BMI values and log10 values. 109
7.4 Histogram of BMI values and log10 values with added linear re-

gression. 110
7.5 Streching horizontally makes the linear regression appear more

horizontal . 111
7.6 Histogram of BMI log10 values, linear regression (blue) and stan-

dard error (gray.) . 112

8.1 Imagining the data strem as a flow of water in pipes. 118
8.2 Is the Tibble logo a hint on Star Trek? 120
8.3 A pipeline to recreate scatter plot of BMI values as s function of

log10 RATIO creatinine adjustment for the sum of PFAS data col-
umn LBXMFOS. 122

8.4 Data is first injected in the pipeline (Hydroelectric power station,
Huanza, Peru.) . 122

11.1 ggplot2 constructs graphs in layers using a grammar of graphics. 146
11.2 Barplot showing total countbyagegroupwithoutgenerdistinction. 150
11.3 With facet_grid() the age distribution by gender is on two sepa-

rate graphs. 151
11.4 Bar plot showng age group distribution by gender. Stack bars is

the default. 152
11.5 Side by side bar of gender count by age group is possible with the

dodge or dodge2 options. 153
11.6 Side by side in each facet. 154

6 LISTOF FIGURES

13.1 Reproducible research is more about computer analysis, replica-
ble research is about reproducing research results. 170

13.2 HTML output of Tiny Rmd as knit output. 178
13.3 HTMLoutput for Tinyest Rmarkdown conversionwithKnit button. 179

F.1 proposed nomenclature for perfluoroalkyl and polyfluoroalkyl
substances . 212

List of Tables

5.1 Airquality dataset variables 46
5.2 Details of the airquality dataset readings 47

6.1 Base R read functions . 76
6.2 PFAS_I codes for sum data 82
6.3 Cholesterol (Total,HDL, LDL& triglycerides) in 2015-2016NHANES 94

7.1 NHANES 2015-2016 albumin/creatinine data 101
7.2 Codes for albumin and creatinine ALB_CR_I file 102

9.1 Lectures on data wrangling: Tidyverse tidyr and dplyr packages. 126

10.1 The DMDMARTL codes fromNHANES DEMO_I 136

12.1 Chosen columns and their description 160

13.1 A course on reproducible research using R 170
13.2 Basic Markdown Syntax . 173

15.1 Free online images and illustrations 193
15.2 Table format conversions inclusing Excel andmarkdown. 195

B.1 Arithmetic operators and their symbols in R 200
B.2 Boolean values . 201
B.3 Rational operators . 201

E.1 PFAS_I analysis code . 209

7

8 LISTOF TABLES

G.1 ggplot2 tutorials online . 213
G.2 Tutorials on bar graph . 214

H.1 Rmarkdown tutorials online 215
H.2 Rmarkdown templates . 216

Contents

Preamble 17
Learning goals . 18
Software used during this tutorial 18

1 Introduction 1
1.1 Software installation . 2
1.2 Installing R packages . 2
1.3 Datasets: NHANES . 3

1.3.1 NHANES 2015-2016 3
1.4 Datasets: included in R . 5

2 HowRworks 7
2.1 R is a software . 7
2.2 R is a language . 8

2.2.1 Classic R vs Tidyverse 8
2.3 Working with R: objects and workspace 9

3 Getting started 11
3.1 Launch RStudio . 11
3.2 Organize with an RStudio project 13
3.3 Creating an R script . 13

3.3.1 Script Editor . 14
3.3.2 Comments . 14

9

10 CONTENTS

3.3.3 Executing commands 15
3.4 Working directory . 15

4 Workingwith R 19
4.1 Creating R objects . 19
4.2 Functions and their arguments 25
4.3 Built-in functions . 26

4.3.1 list: ls() . 26
4.3.2 class() . 26
4.3.3 combine: c() . 26
4.3.4 length() . 27
4.3.5 Working directory: getwd() and setwd() 27

4.4 Getting help . 28
4.5 Vectorisation . 28
4.6 More complex data . 29

4.6.1 Vectors . 29
4.6.2 Matrix . 29
4.6.3 Combining vectors to create a matrix 30

4.7 Dataframes . 31
4.7.1 Dataframemanipulation 32

4.8 Generating data . 34
4.8.1 Regular sequences 34
4.8.2 Repeat and sequence functions: 34
4.8.3 Levels: gl() and expand.grid() 35
4.8.4 Random numbers 37

4.9 Conditional statements . 39
4.9.1 Function ifelse() 39

4.10 Simple graphics with plot() 40

5 Workingwith tabular data in R 45
5.1 Airquality dataset . 46
5.2 Exploring airquality . 47
5.3 Subsetting . 50

CONTENTS 11

5.4 Base R Graphics exploration 52
5.5 Boxplots . 54
5.6 Scatter plots . 58
5.7 Simple linear regression . 61
5.8 Fancier Graphics exploration 64

5.8.1 Boxplots . 65
5.8.2 Scatter plots . 69

6 Importing data 75
6.1 Importing from local files 76
6.2 Downloading Nhanes data 77

6.2.1 PFAS_I . 78
6.3 Exploring PFAS_I data . 81

6.3.1 PFAS_I boxplot . 83
6.3.2 PFAS_I histogram 88
6.3.3 Fancier boxplot with qplot 91

6.4 Merging data files . 93
6.4.1 Merge() function . 96
6.4.2 Merging demographics data 98

7 Creatinine adjustment 99
7.1 Creatinine data . 101

7.1.1 Downloading, merging PFAS and creatinine 102
7.2 Analyte measurement units 103
7.3 Reduced set . 104
7.4 Computing Analyte / Creatinine ratio 104
7.5 Exposure - Outcome . 106

7.5.1 Illusions . 111
7.5.2 qplot version . 111

7.6 Creating a master data file 112

8 Tidyverse: another RUniverse 115
8.1 Magrittr - pipe and pipelines 117
8.2 Tibble . 119

12 CONTENTS

8.3 dplyr - overview . 120
8.3.1 Demo 1: all together pipeline 120

9 Intermission: datawrangling 125
9.1 Part 3 here . 126

10 dplyr - datamanipulation 127
10.1 selecting columns . 128
10.2 Filtering rows . 129
10.3 Arrange data . 131
10.4 mutating data . 132

10.4.1 mutate with conditional statement 133
10.5 Summarising and grouping data 134
10.6 Recoding: string replacement 135
10.7 Getting it all together . 137

10.7.1 Example 1: by gender 138
10.7.2 Example 2: by gender and age 139
10.7.3 Base R Bar plot . 142
10.7.4 ggplot2 versions . 144

11 ggplot2 145
11.1 Tutorials . 147
11.2 ggplot2 using dplyr chapter results 148

11.2.1 Barplot with qplot / ggplot 148
11.2.2 Error bars andmeanTChol 153

12 UsingNHANESweights 157
12.1 Header comments and packages 158
12.2 Acquiring NHANES data . 159
12.3 Data wrangling: renaming and selecting data 159

12.3.1 Renaming columns 159
12.3.2 Selecting columns 161
12.3.3 Changing variable status to a factor 161
12.3.4 Adding the weight information 164

CONTENTS 13

12.3.5 Statistics . 165

13 Markdown andReproducible research 169
13.1 Markdown . 171

13.1.1 Markdown syntax 172
13.2 Rmarkdownmagic . 174

13.2.1 Before your start . 174
13.2.2 How to create an Rmarkdown file 175
13.2.3 Adding R code . 176
13.2.4 Very tiny Rmd file: Inline code 178

13.3 Other formats . 180
13.4 A word on YAML . 181

13.4.1 Limits . 181
13.4.2 Indentation andWhite space 181
13.4.3 Automatic modifications 181
13.4.4 Quotes . 182
13.4.5 Date . 182
13.4.6 YAML resources . 183

14 Report-template 185
14.1 Overall template format . 186
14.2 YAML example . 187
14.3 General chunk options . 188
14.4 Preamble, Preface and Introduction 188
14.5 Activating packages . 189
14.6 Live web links . 189
14.7 Embedding graphs . 189
14.8 Inline code . 190
14.9 Math formula . 190
14.10 Addendum . 191

15 Report resources 193
15.1 Illustrations . 193

15.1.1 Adding and sizing images 194

14 CONTENTS

15.2 Markdown tables . 194

Appendix 195

A The story of R 197

B Simplemath 199
B.1 Arithmetic operators . 199
B.2 Boolean values . 201
B.3 Rational operators . 201
B.4 Logical operators . 201

C Import NHANES sample code 203

D MergeDownloads into aMaster file 205
D.1 Download into R object with NHANES code 205
D.2 Combine files into Master 206
D.3 Save/Write Master file to disk 207
D.4 Alternate download to R object with haven 207
D.5 Download, save XPT files to hard drive 208

E PFAS_I codes 209

F Perfluoroalkyl and polyfluoroalkyl 211

G ggplot2 tutorials online 213

H Rmarkdown resources 215

I The Story of Vector V: an Rmarkdown example 217

About the authors 221

Acknowledgments 225
I.1 R packages used for the book 225
I.2 Extra Icons used: . 225

CONTENTS 15

I.2.1 Exercise / Homework 225
I.2.2 Study at home: . 226

16 CONTENTS

Preamble

The course book is based on a tutorial course for the 2020 “Summer Research Op-
portunities Program” (SROP) for “Underrepresented Racial Minority” (URM) at
the University of Wisconsin-Madison (of the Vice Provost (2013), and Archived)

The main objective of this course is to learn how to analyze tabular datasets of
environmental health data using the software Rwithin the RStudio interface.

This course is also a preparation on reproducible research using dynamic documents
for the analysis of environmental health data from the “Center for Disease Control
and Prevention” (CDC) “National Center for Health Statistics” (NCHS) repository of
“NationalHealth andNutrition Examination Survey” (NAHANES) datasets. This type
of large tabular data is typical and will provide a number of useful examples.

A special distinction between “classic R” and “Tidyverse” nomenclature will be
highlighted.

This course book is available online in 2 formats on link shown below as a short-
ened URL:

– HTML: https://go.wisc.edu/9zu8ud
– PDF: https://go.wisc.edu/4zzw73

HTML is the primary format for easier Copy/Paste interaction. PDF is eas-
ier to print or download and contains a useful Index.

“Environmental Health is the field of science that studies how the en-

17

https://web.archive.org/web/20200729215023/https://diversity.wisc.edu/wp-content/uploads/2017/02/Final_SDU.pdf
https://go.wisc.edu/9zu8ud
https://go.wisc.edu/4zzw73

18 CONTENTS

vironment influences human health and disease.”
National Institute of Environmental Health Science NIEHS

Data and observations are usually collected in the form of numbers and gathered
into tables representing the data in columns and rows.

Learning goals

During this course we’ll acquire new skills:

- Install and run R and Rstudio software with additional packages
- Understand programming concepts such as variables, conditional statements, data
stream, and pipelines
- Examine, compare and contrast data
- Illustrate analyzes with graphics and plots
- Compose reproducible reports that can be automated

At the end of the course you’ll have acquired sufficient proficiency and in-
dependence to use the software R within the RStudio graphical interface to
analyze complex environmental datasets in tabular form and create useful and
reproducible reports with annotated graphics.

Software used during this tutorial

• R - fromThe Comprehensive R Archive Network at cran.r-project.org
• RStudio - from rstudio.com

We’ll also install additional “modules” within R called “packages” to add function-
ality andmake analysis easier.

https://www.niehs.nih.gov/
https://cran.r-project.org/
https://cran.r-project.org/
https://rstudio.com/

Chapter 1

Introduction

In this classwe’ll use the software called R inside another software called RStudio
that provides a great graphical and intuitive user interface.

R is the name of the software itself, but also the name of the programming language
that is used within the software.

In this chapter:
• Software installation
• Installing R packages
• NHANES datasets

Just like a cooking recipe is a series of tasks to prepare a dish starting with spe-
cific ingredients, a program is simply a list of instructions to be performed and the
ingredients are the data that are provided within a dataset. The instructions are
written with a programming language, in our case R.

This 5 minutes video R - Coding - 4.11 explains how R is useful in data science.

1https://youtu.be/xp1l7utYFGs

1

https://youtu.be/xp1l7utYFGs

2 CHAPTER 1. INTRODUCTION

1.1 Software installation

Students should install the following two software on their computer. Both R and
RStudio have versions for the three main types of computers. Once installed,
working within the software is the same on all computer platforms.

TASK: Install the software on your computer.

– R - fromTheComprehensive R Archive Network at cran.r-project.org
– RStudio - from rstudio.com

Choose the version for your computer and follow installation instructions.

The installation process is rather intuitive. If you needmore guidance the follow-
ing step-by-step videos would be useful:

• Installing R and RStudio onWindows 10 (March 20, 2020 - 3min 23sec)

• Installing R and Rstudio onMacOS (Mar 22, 2020 - 4min)

1.2 Installing R packages

Packages are modular additions to the R software that add functionality in the
form of new functions, included datasets, documentation, etc. The standard
repository of R packagesThe “Comprehensive R Archive Network” (CRAN) will likely
be the most used for environmental health.

One of a “suite” of packages thatwe’ll use is calledTidyverse and it should prefer-
ably be installed before classes start. While Tidyverse is a suite ofmultiple pack-
ages, this can be installed just like a single package with that single name.

Themethod to add a package is rather simple:

• Copy the followingcommand in theR console: install.packages("tidyverse")
• Alternatively use the Packages pane in RStudio to do the installation with
the graphical interface

https://cran.r-project.org/
https://cran.r-project.org/
https://rstudio.com/
https://youtu.be/VLWaED9jTiA
https://youtu.be/Y20P3u3c_1c

1.3. DATASETS: NHANES 3

Figure 1.1: Adding packages is like adding gears for a more powerful engine.

See also section 3 to get oriented in RStudio.

To install in RStudio follow this video Installing Packages in R Studio (Nov 20,
2012 - 2.52 min) and use the package name Tidyverse instead.

To install in R follow the demonstration in the video How to Install Packages in R
(Aug 9, 2013 - 6:24min)

1.3 Datasets: NHANES

Exercises in this book will be from the National Health and Nutrition Examina-
tion Survey (NHANES)2 a survey research program conducted by the National
Center for Health Statistics (NCHS)3 to assess the health and nutritional status
of adults and children in the United States, and to track changes over time.

An article in FAQS.org (Beals (2008)) details the history of NHANES and how the
collected data is used.

1.3.1 NHANES 2015-2016

NHANES data is collected in datasets and we’ll use datasets from the 2 year col-
lection between 2015 and 2016.

2https://www.cdc.gov/nchs/nhanes/
3https://en.wikipedia.org/wiki/National_Center_for_Health_Statistics

https://youtu.be/u1r5XTqrCTQ
https://youtu.be/3RWb5U3X-T8
https://www.cdc.gov/nchs/nhanes/
https://en.wikipedia.org/wiki/National_Center_for_Health_Statistics
https://www.cdc.gov/nchs/nhanes/
https://en.wikipedia.org/wiki/National_Center_for_Health_Statistics

4 CHAPTER 1. INTRODUCTION

Figure 1.2: NHANES logo.

IMPORTANTNOTE:

NHANES datasets are complex and in some cases the data may not be
used as is and may require careful considerations before any conclusion is
reached. Attention should be given to the existence of sub-groups. In other
cases comparisons need to include sub-group weights that are included
within the dataset.

See chapter 12.

NHANESfile names:

The NHANES data files have succinct names, for example DEMO for demo-
graphics, with an appended suffix that is specific the the series. For exam-

1.4. DATASETS: INCLUDED INR 5

ple, 2015-2016 have the suffix _I and the actual file will have the root name
DEMO_I while the demographics for other series would be different. For
example the 2017-2018 series has suffix _J and the very first series in 1999-
2000had suffix_A.Thepattern is therefore to go to thenext letter each time
a new series is published.

Video4: How are the data collected from the participant’s point of view NHANES
Participants (English) 2:22min

See also5: The Latest Data Release and Reports from the National Health and Nu-
trition Examination Survey May 21, 2020 - 57:29 min

1.4 Datasets: included in R

A number of small datasets are included with R during installation. We might
make use of one or more.

There is no further installation required to access the included datasets.

4https://youtu.be/xYBWlSGzVZM
5(https://youtu.be/CXKFSdCXrFI)

https://youtu.be/xYBWlSGzVZM
https://youtu.be/xYBWlSGzVZM
https://youtu.be/CXKFSdCXrFI
https://youtu.be/CXKFSdCXrFI
https://youtu.be/xYBWlSGzVZM
https://youtu.be/CXKFSdCXrFI

6 CHAPTER 1. INTRODUCTION

Chapter 2

HowRworks

R is both a software and a language. There are just a few things that the user
shouldbeawareof tounderstandhowRworks thatwecanseparatebetween these
2 aspects.

In this chapter:
• R is a software
• R is a language
• Working with R: objects and workspace

2.1 R is a software

R is a software that:

• should be installed on the computer prior to class (see section 1.1.)
• has a basic set of capabilities that can be enhanced by adding packages

• can be used as a computation engine by other software such as RStudio
• is mostly run by commands entered with the keyboard

7

8 CHAPTER 2. HOWRWORKS

2.2 R is a language

As a language R has capabilities to:

• use mathematical and logical operators

• create and use variables with the assignment operator <-

• recognizes and handles different data types including scalars, vectors
(numerical, character, logical), matrices, data frames, and lists.

• can create plots and graphics

• import data frommany file types, from text to databases or from the web

• use built-in functions to carry out a specified task on the data or variables.

• add new collections of R functions, data, and compiled code in a well-
defined format in the form of additional packages.

• provide a comprehensive built-in help system.

2.2.1 Classic R vs Tidyverse

The way R works with commands can be confusing for multiple reasons. State-
ments written in the original R language now called “Classic R” can be sometimes
cumbersome and lacking in clarity. The newer set of pcakges that make upa
“Suite” called Tidyverse has created a new set of language format that is more
modular and often easier to understand.

After reviewing basic “Classic R” we’ll also review Tidyverse methods when work-
ing on datasets later on.

2.3. WORKINGWITHR: OBJECTS ANDWORKSPACE 9

2.3 Workingwith R: objects andworkspace

Theworkspace isaworkingenvironmentwhereRwill store and rememberuser-defined
objects: vectors, matrices, data frames, lists, functions, variables etc. At the end
of an R session, the user can save an image of the current workspace that is auto-
matically reloaded the next time R is started.

Except for functions most of the user-defined objects are usually referred to as R
objects as a way to designate them. An R object makes it easy for humans to des-
ignate its content which could be a single numerical value or a large table of data.

Figure 2.1: R objects are containers hodling data, variables, tables, etc.

R tends to keep all data in the computer memory (RAM) which used to limit the
ability to work on large datasets. However, there are now special packages and
functions that can help with this aspect.

10 CHAPTER 2. HOWRWORKS

Figure 2.2: R holds workspace, objects in RAM.

Chapter 3

Getting started

Wewill use RStudio as a global interface to R.We’ll write code, open and save files,
create and visualize plots, keep track of variables andRobjects allwithin the same
RStudio window.

In this chapter:
• Launching Rstudio
• Organize with an Rstudio Project
• Create an R script
• Working directory

3.1 LaunchRStudio

TASK: Launch RStudio

To get started launch RStudio on your computer and it will access R auto-
matically.

Both R and RStudio should be installed prior to class (see section 1.1.)

11

12 CHAPTER 3. GETTING STARTED

RStudio will open with 3 sections (called panes) if it is the first time you are using
it:

• the R Console (left),
• Workspace area with Environment/History (top-right), and
• Files/Plots/Packages/Help/Viewer (bottom-right).

Whenwe invoke the Source text editor it will automatically show at the top of the
R Console on the left (see figure 3.1.)

EDITOR WINDOW
WORKSPACE

R Console

FILES,PLOTS, etc

Figure 3.1: The 4 quadrants of RStudio interface.

Note: the relative position and content of each pane can be customizedwith
the menu cascade:
Tools -> Global Options -> Pane Layout

3.2. ORGANIZEWITHANRSTUDIO PROJECT 13

3.2 Organizewith an RStudio project

It is a good habit to immediately create a project for handling the analysis of new
data and keep everything together. RStudio can create the project directory if it
does not exist, or it can use a directory that has already been set-up.

Having a single top-level directory to move the project to a different drive or into
another directory, or to share it with collaborators. Subdirectories can also be
used to better separate various files and data.

TASK: Create an R project

Start with menu cascade:File >NewProject and then choose:

– NewDirectory
– Empty Project
– Chose a name for the directory, for example learn-R
– Keep the suggestion to create the project in ~/Desktop
– Click on Create Project

From there it would be possible to create sub-directories from within the RStu-
dio interface under the Files tab in the bottom-right pane. Alternatively the sub-
directories could also be created from the familiar computer operating system
interface.

For more complex project it may be useful to create sub-directories to contain
data, scripts andotherdocuments separately. For very complexdatamore sub-
directories could be added such as an output directory for example.

For now we’ll just keep things under the same project folder.

3.3 Creating anR script

Tomore easily keep a record we’ll create a new text file with the built-in Editor.

14 CHAPTER 3. GETTING STARTED

TASK: Create script file

Use the followingmenu cascade to create a new script:

File >NewFile > RScript

You should now have a blank space on the left hand side as in figure 3.1.

This iswherewe’ll writeR code and thefile can thenbe saved to aplain text file that
can be used again later. When saved the file will have a .R filename extension.

3.3.1 Script Editor

Theeditor is a plain text editor (no bolds or italics) but it offers color-coding of the
text depending on what is written (syntax highlighting.)

3.3.2 Comments

While the codewewrite alwaysmakes sense right now itmay not be obvious to oth-
ers, including ourselves in the future. It is therefore extremely useful to comment
the script with information such as giving a tile to sections or plain comments on
the goal we are trying to accomplish.

Commenting is accomplished easily: each line with a a hashtag (#) is a comment
and is ignored by R.

For example:

This is a comment line
I can write many comments to make sure I remember what I am doing
The dir() function lists the content of the current directory
dir() # comments can even be added here

3.4. WORKINGDIRECTORY 15

Figure 3.2: Adding comments to scripts makes them easier to share with others,
or your future self.

3.3.3 Executing commands

Commands that are written within the script can be executed by using the Ctrl
+ Enter shortcut (on Macs, Cmd + Enter will also work.) This will execute the
command on the current line (indicated by the cursor) or all of the commands in
the currently selected text.

This actionwill send the selected text to the R console thatwill run the commands.
It is therefore the same as a Copy/Paste action from the script to the console, but
easier.

3.4 Working directory

We created a new RStudio project earlier and the Files Tab on the bottom right
pane shows the location of files and the “path” to this directory (red circle in figure
3.3.) It is possible to navigate the whole hard drive by using the 2 dots .. next to

16 CHAPTER 3. GETTING STARTED

the “up” green arrow.

Figure 3.3: Files Tab shows files and path.

TheMore pull-down (3.4)menumakes it easy to return to theworking directory if
we got lost navigating the hard drive directory, to choose a new directory, or even
to open the working directory on the computer graphical interface

In a section 4.3 we’ll learn command functions that can let us find or change the
working directory from the R console.

3.4. WORKINGDIRECTORY 17

Figure 3.4: More menu provides easy navigation to working directory.

18 CHAPTER 3. GETTING STARTED

Chapter 4

Workingwith R

This sectionwill be kept brief as there is a large set of introductionmaterial online.
For example this online book: “Introduction to R”1.There are indeed a few princi-
ples in “Classic R” that should be understood such as creating R objects (section
4) and using basic R functions.

In this chapter:
• Creating used-defined R objects
• Functions and their arguments
• Vectorization
• Data frames tabular format
• Generating data
• Simple graphics with plot()

4.1 Creating R objects

User-created R objects are a method to handle data. It can be thought of as two
actions:

1https://cengel.github.io/R-intro/‘

19

https://cengel.github.io/R-intro/
https://cengel.github.io/R-intro/

20 CHAPTER 4. WORKINGWITHR

• Read the data into a container, or jar
• label the jar with the content

Regardless of the size of the data (and perhaps with a little magic?) the container
will adopt the required size to contain all of the data.

The user will then define a name for the container to easily call it back later.

<-
Figure 4.1: The assignment operator <- is used to create R objects.

NOTE

Theassignmentoperator canbe replacedwith the equal sign= inmost cases
but “R purists” prefer the standard <- assignment code.

For amore complex discussion seeWhatare the differences between “=” and “<-”
assignment operators in R?2

Here is a simple illustration: we’ll place the word strawberry into an jar called
jam. In order to do the job we need to use the “assignemnt” symbol <- that could
be read as “assign..” or “place into” or “read in” etc. Since strawberry is a word

https://stackoverflow.com/questions/1741820/what-are-the-differences-between-and-assignment-operators-in-r
https://stackoverflow.com/questions/1741820/what-are-the-differences-between-and-assignment-operators-in-r

4.1. CREATINGROBJECTS 21

and not a number it has to be placed between quotes.

jam <- "strawberry"

wenowhave anRobject calledjam that contains the character stringstrawberry.
In the top right panel in RStudio the new object is now listed as shown in figure
4.3.

Figure 4.2: A jar as a metaphor for an R objects.

As we just saw, characters have to be placed within quotes. The following data
types occur often with routine R calculations:

• Numeric
• Integer
• Complex
• Logical
• Character

An R object can contain many types of data. It is easier to understand this with
numbers. Let’s make another object: we’ll assign the number 12 to an object la-
beled dozen. Since 12 is a number we do not use quotes.

dozen <- 12

Since dozen contains and represents the number 12 we can also use mathemat-
ical operators on it. for example we can calculate how much are 2 dozens: the
result is calculated by R using dozen as a variable.

22 CHAPTER 4. WORKINGWITHR

Two dozens are:
dozen * 2

[1] 24

Theresult will be printed on the screen. Since there is only one value, the first line
on the result is [1].

The choice of the label (or name) of the R object should be helpful. Here dozen
is very specific and one would not want to use that label for containing any other
number than 12.

Figure 4.3: R objects are conveniently listed within the *Environment* Tab in
RStudio.

A more useful name might be multiplier? perhaps not, maybe we would want
to use that object to divide!

Let’s choose a more generic label. Some people like to addmy as part of the cho-
sen name to make sure that they are not inadvertently using the same name as
another program. for example let’s use myNum to representmy number:

myNum <- 12

We can again make use of this object that will replace the value it contains. Here
are some examples with arithmetic operators: add, subtract, multiply, divide.

4.1. CREATINGROBJECTS 23

(See Appendix @ref=(arithmeticoperators).)

add:
myNum + dozen

[1] 24

subtract:
myNum - dozen

[1] 0

multiply:
myNum * dozen

[1] 144

divide:
myNum / dozen

[1] 1

We can also ask if the two objects are “equal”, a question that can only result as
TRUE or FALSE.This comparison requires using relational operators (see Appendix
B.3.) It is noteworthy that such comparison is not limited to objects containing
numbers.

compare:
myNum == dozen

[1] TRUE

Exercise 4.1. Exercise: calculate a price

The price of one egg is 20 cents.
The price of a dozen is discounted 10%.
We want to buy 3 dozen.
Howmuch will this cost?

24 CHAPTER 4. WORKINGWITHR

Figure 4.4: A dozen often referred to eggs.

Can youwrite the code to easily change the number of dozen purchased? or if the
discount is changed later?

here are some hints

egg <- 0.2 # 20 cents in $
dozen <- 12
discount <- 0.10 # 10% in decimal
myNum <- 3 # how many I want now

Of course this could be calculatedwith just the numbers. But itmakes computing
changes easier if we use variables. Later we can change the variable assignment.

Price without discount: $ 7.2

Discount: $ 0.72

Discounted price = $ 6.48

CAUTION

R objects cannot have a name that start with a number and cannot contain
a dash as it is interpreted as a minus sign.

Thenameof an objectmust startwith a letter (A–Z or a–z) but can include
letters, digits (0–9), dots (.), and underscores (_). R is case sensitive and
discriminates between uppercase and lowercase letters in the names of the

4.2. FUNCTIONS ANDTHEIR ARGUMENTS 25

objects, so that a and A can name two distinct objects (even under Win-
dows).

4.2 Functions and their arguments

We just saw examples on how to use R with numbers to do some calculations.
More complicated calculations, and computations, are handled with functions
many of which are installed as part of base R installation. More functions can be
added as we’ll see later.
Functions perform a task to “accomplish something.” The “something” could be
the transformation of data, for example calculating the logarithmic value of a pro-
vided number. Most of the time the function returns and output.

Therefore one can think of a function taking an input and usually providing an
output.

A function typically takes input and provides output.

The input is provided in the form of argumentwhich can be R objects, variables,
numbers, etc.

A functionwill typically haveadefault behavior that canbemodifiedwithoptional
arguments.

A function is always written as its name followed by parenthesis, even if these
remain empty. For example the function to list all the R object currently within
the workspace is the list function and it written as ls().

A function is alwayswritten with parenthesis even if they remain empty.

Most function will have a default behavior as determined by default arguments. Ad-
ditional arguments andoptionsmaybe added to a function tomodify its behavior.
The input is typically one of the arguments provided. Arguments can be anything
expected by the function and can be numbers, filenames, but also other objects.

26 CHAPTER 4. WORKINGWITHR

Themeaning of each required or optional argumentmay differ depending on the
function and can be looked up in the documentation.

A function has default arguments. Options and additional arguments may mod-
ify its behavior.

4.3 Built-in functions

An R function is invoked by its name, then followed by parenthesis. Parenthesis
contain mandatory or optional arguments to pass to the function. Parenthesis
are always written even if they remain empty.

4.3.1 list: ls()

For example we can now list the R objects that we created above with the function
ls():

ls()

[1] "colorize" "discount" "dozen" "egg" "jam" "myNum"

4.3.2 class()

We can verify the type, or class of these variables with the function class()

class(jam)

[1] "character"

class(myNum)

[1] "numeric"

4.3.3 combine: c()

Thecombine function is essential in R.

4.3. BUILT-IN FUNCTIONS 27

For example the following three numeric values are combined into a vector. (More
on vectors below, section 4.6.1.)

c(1, 2, 3)

[1] 1 2 3

Since we did not assign to a user-defined object or a variable name the output is
immediately printed out.

Here is the same vector assigned to variable v

v <- c(1, 2, 3)

This time no out put is produced but the data is stored in memory and can be
called again.

However it is possible to obtain both actions a the same time: placing the assign-
ment code within parenthesis:

(v <- c(1, 2, 3))

[1] 1 2 3

4.3.4 length()

It may be useful to know the length of an object:

length(v)

[1] 3

4.3.5 Working directory: getwd() and setwd()

In section 3.4 we saw how choose a new directory or return to it.

Functiongetwd()will get the working directory and print it on the console.

28 CHAPTER 4. WORKINGWITHR

getwd()

Function setwd() will take as argument the absolute or relative path to the new
chosendirectory as defined by your operating system. Mac, Unix and Linux users
use the forward slash (/) as a separator. This also works in Windows. However
Windows users need to double back slashes (\\) is they use the backslash (/) as a
separator. See Appendix C for sample code example that is also suited for Win-
dows users.

4.4 Getting help

R provides extensive documentation. Depending on the installation method or
how you access R the results may appear either in plain text within the R console,
an HTML page, or within the Help tab on RStudio etc.

For example, entering ?c or help(c) at the prompt provides documentation of
the combine function c().

NOTEWithin help, ... often means that arguments can be passed along
by other functions. index{Symbols!…}

4.5 Vectorisation

R calculations are “vectorized” in the sense that any calculation can be applied to
all elements of e.g. a vector. For example:

multiply elements of vector v by 10:
v * 10

[1] 10 20 30

divide elements of vector v by 2:
v / 2

4.6. MORECOMPLEXDATA 29

[1] 0.5 1.0 1.5

This is a very important aspect of R.

4.6 More complex data

There exist other types ofmore complex data that R can handle, most of them can
be tabular or multidimensional:

• Vector
• Matrix
• List
• Data Frame

Tabulardata is a very common formto collect informationandmostuseful indata
analysis.

4.6.1 Vectors

We already created a one-dimensional vector v above containing numeric values.
But vectors can also contain characters or logical data. However, all data in one
vector have to be of the same nature.

For example here is a vector made of characters:

create a vector of character
vc <- c("a", "b","c")

4.6.2 Matrix

Amatrix is a collection of data elements arranged in a two-dimensional rectangu-
lar layout. All elements have to be of the same nature, e.g. numeric or character.

The function matrix() can be used to create a newmatrix object.

30 CHAPTER 4. WORKINGWITHR

matrix(c(1,2,3,4,5,6), nrow=2)

[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

However, somemore information needs to be given, for example howmany rows
should thematrixhave, this is doneby thenrow=option. Obviously thenumberof
elements given should be in the number of expected row by columns. The default
values are nrow = 1, ncol = 1 and the default fillingmethod is by column since
the default is byrow = FALSE.

EXERCISE
Try to change some of the defaults. For example change byrow = FALSE
to byrow = TRUE.

Your results:

4.6.3 Combining vectors to create amatrix

Another way to create amatrix is by combining vectors of the same lengthwith the
functions cbind() or rbind() to combine by column or row.

EXERCISE
Try these commands on the vectors v and vc - for example:

4.7. DATAFRAMES 31

with v
cvv <- cbind(v,v)

rvv <- rbind(v,v)

cvvvc <- cbind(v,v,v)

with character vector vc
vc2 <- cbind(vc,vc)

with both v and vc
vc3 <- cbind(v,vc)

Your results:

What happened when using both v and vc (hint: class().)

4.7 Dataframes

Dataframesare a typeof table that allows each column to contain a different vari-
able type. For example one column can contain characters and another column

32 CHAPTER 4. WORKINGWITHR

can contain numbers.

This type of tabular data is extremely useful in data analysis.

We can use the function data.frame() to construct a dataframe starting with
and combining vectors.

num: a vector if numbers
num <- c(2, 3, 5)

let: a vector or letters
let <- c("aa", "bb", "cc")

tf: a vector or logicals true or false
tf <- c(TRUE, FALSE, TRUE)

df is a data frame
df = data.frame(num, let, tf)

We can inquire about df: the class of the object, its dimensions, the name of the
headers for the columns.

class(df)

[1] "data.frame"

dim(df)

[1] 3 3

names(df)

[1] "num" "let" "tf"

4.7.1 Dataframemanipulation

As just as simple demonstration we’ll change the name of the rows.

4.7. DATAFRAMES 33

For now the dataframe looks like this:

df

num let tf
1 2 aa TRUE
2 3 bb FALSE
3 5 cc TRUE

and if we ask the name of each row we get the current list:

rownames(df)

[1] "1" "2" "3"

In R things can change by reassigning new values, so we can indeed change the
row names with the function**rownames() and giving new values. For example:

row.names(df) <- c("row1", "row2", "row3")

print df
df

num let tf
row1 2 aa TRUE
row2 3 bb FALSE
row3 5 cc TRUE

In the same way we could change the column names:

colnames(df) <- c("numbers", "letters", "logical")

Note: functions row.names and rownames exist for rows, but only
colnames exist for columns.

In this final version the data itself is not altered but we changed both the column
and row names:

34 CHAPTER 4. WORKINGWITHR

df

numbers letters logical
row1 2 aa TRUE
row2 3 bb FALSE
row3 5 cc TRUE

4.8 Generating data

There are many ways to generate data from within R as series of numbers, in se-
quence or as random numbers. This section is purposefully kept simple.

4.8.1 Regular sequences

The generation of numbers in sequence can be useful to create lists.

The following command will generate an object with 10 elements; a regular se-
quence of integers ranging from 1 to 10, saved wihtin variable x thanks to the op-
erator :

x <- 1:10
x

[1] 1 2 3 4 5 6 7 8 9 10

Various options can be used to alter the results, for example requesting 11 values,
starting with 3 and ending at 5.

seq(length=11, from=3, to=5)

[1] 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0

4.8.2 Repeat and sequence functions:

Itmay be useful to print a numbermultiple time. This can be donewith therep()
function. For example:

4.8. GENERATINGDATA 35

rep(1,15)

[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

The function sequence() creates a series of sequences of integers each ending
by the numbers given as arguments.

sequence(2:5)

[1] 1 2 1 2 3 1 2 3 4 1 2 3 4 5

For clarity here is the result with * separators added:

[1] 1 2 *1 2 3* 1 2 3 4 *1 2 3 4 5*

To understand this output it is useful to also remember that 2:5means 2, 3, 4, 5
and that the function will apply to each of these digits in turn.

4.8.3 Levels: gl() and expand.grid()

These two functions are very useful for creating tables containing experimental
data.

The function gl() generates “levels”series of “factors” or “categories” as values or
labels. The following example will generate 4 each of 2 levels:

gl(2, 4, labels = c("Control", "Treat"))

[1] Control Control Control Control Treat Treat Treat Treat
Levels: Control Treat

The function expand.grid() creates a data framewith all possible combinations
of vectors or factors given as arguments.

This example

expand.grid(h=c(60,80), w=c(100, 300), sex=c("Male", "Female"))

36 CHAPTER 4. WORKINGWITHR

h w sex
1 60 100 Male
2 80 100 Male
3 60 300 Male
4 80 300 Male
5 60 100 Female
6 80 100 Female
7 60 300 Female
8 80 300 Female

Note: The arguments are rotated as a function of their position in the command.

EXERCISE
Try the following:

expand.grid(sex=c("Male", "Female"), h=c(60,80), w=c(100, 300))

Howmany lines is the table (not counting the header? (hint: row numbers)

The use of seq() can also be useful in this context.

EXERCISE
Try the following examples.

expand.grid(sex=c("Male", "Female"), h=c(60,80), w=c(100, 300))

expand.grid(height = seq(3, 3, 5),
weight = seq(100, 250, 50),
sex = c("Male","Female"))

Howmany lines is the table (not counting the header? (hint: row numbers)

4.8. GENERATINGDATA 37

Add one more variable treatment = c("control", "drug")) and see how
much the table explands:

expand.grid(height = seq(3, 3, 5),
weight = seq(100, 250, 50),
sex = c("Male","Female"))

Howmany lines is the table (not counting the header? (hint: row numbers)

Note: the function dim() can be applied directly as well, for example:

dim(expand.grid(sex=c("Male", "Female"),
h=c(60,80),
w=c(100, 300)))

4.8.4 Randomnumbers

Most of the statistical functions are available within R such as Gaussian (Normal),
Poisson, Student t-test etc.

To generate random numbers, the function based on the Normal distribution we
use the function rnorm() (r for random and norm for Normal.) The number of
desired random numbers is given as argument.

Since these are random, the answers are never the same!

EXERCISE
Perform the following command requesting a single random number a
few times (e.g. 5 times) in a row:

rnorm(1)

Do you get the same result every time?

[] Yes [] No

38 CHAPTER 4. WORKINGWITHR

To providemeans of reproducible the function set.seed() can be used to obtain
the same result every time. The seed is a number chosen by the author. Here is
an example selecting three numbers.

set.seed(33); rnorm(3)

[1] -0.13592452 -0.04079697 1.01053901

set.seed(33); rnorm(3)

[1] -0.13592452 -0.04079697 1.01053901

set.seed(33); rnorm(3)

[1] -0.13592452 -0.04079697 1.01053901

However, changing the seed value will change the results:

set.seed(22); rnorm(3)

[1] -0.5121391 2.4851837 1.0078262

Important note3 “[these] Pseudo Random Number Generators because they
are in fact fully algorithmic: given the same seed, you get the same sequence.
And that is a feature and not a bug.”

One Rmethod for choosing letters at random is with the function sample(). The
term LETTERS represents the alphabet and is built-in R.

sample(LETTERS, 5)

[1] "Q" "E" "K" "C" "P"

sample(LETTERS, 5)

[1] "T" "P" "H" "Z" "A"

In the sameway as before setting a seedwill reproduce the same result every time.

4.9. CONDITIONAL STATEMENTS 39

set.seed(42); sample(LETTERS, 5)

[1] "Q" "E" "A" "J" "D"

set.seed(42); sample(LETTERS, 5)

[1] "Q" "E" "A" "J" "D"

4.9 Conditional statements

Making choices or decisions are what conditional statements are all about in pro-
gramming.

There are multiple ways of writing a conditional statement in R using different
functions

4.9.1 Function ifelse()

Function ifelse() has the same functionality as the IF statement in Excel and
required 3 arguments:

1. a logical test that is either TRUE or FALSE
2. an answer if the logical test is TRUE
3. and alternate answer if the logical test is FALSE

This is best understood by an example:

Logical test is TRUE: print first option
ifelse(5 > 4, "YES! 5 is greater than 4", "NO! 5 is not smaller than 4")

[1] "YES! 5 is greater than 4"

Logical test is FALSE: print second option
ifelse(5 <= 4, "YES! 5 is greater than 4", "NO! 5 is not smaller than 4")

40 CHAPTER 4. WORKINGWITHR

[1] "NO! 5 is not smaller than 4"

This will be revisited later in the Tidyverse section (10.4.1.)

Other conditional statements can be learned elsewhere. For example:

• MODULE 4.5 Conditional Statements in R (Utah Sate Univ.)4

• Conditional statements and loops in R5.

4.10 Simple graphics with plot()

Wewill create a very simple graphic output from generated random numbers:

Create a data vector of 100 random numbers (note: if you choose the same seed
number your final plot will be identical.)

set.seed(9)
data <- rnorm(100)

The plot() function will create a simple scatter plot with circles as the default
symbol.

plot(data)

It is possible to include more than one plot on the same figure/page with the pa-
rameter function modifying the number of rows and columns planned for plot-
ting: par(mfrow=c(1,1)) by default.

As a brief example we’ll replot these data points as points, lines, both, and overlay.
The labels for the axes are rendered blank to make the final layout less cluttered.

par(mfrow = c(2,2))

plot(data, type = "p", main = "points", ylab = "", xlab = "")
plot(data, type = "l", main = "lines", ylab = "", xlab = "")

4http://learnr.usu.edu/base_r/data_manipulation/4_5_conditionals.php
5https://youtu.be/2evtsnPaoDg

http://learnr.usu.edu/base_r/data_manipulation/4_5_conditionals.php
https://youtu.be/2evtsnPaoDg
http://learnr.usu.edu/base_r/data_manipulation/4_5_conditionals.php
https://youtu.be/2evtsnPaoDg

4.10. SIMPLEGRAPHICSWITHPLOT() 41

0 20 40 60 80 100

−
2

−
1

0
1

2

Index

da
ta

Figure 4.5: Function plot() automatically generated scatter plot.

plot(data, type = "b", main = "both", ylab = "", xlab = "")
plot(data, type = "o", main = "both overplot", ylab = "", xlab = "")

Afterwards it is useful to reset the number of plots per page to 1:

par(mfrow = c(1,1))

Other types of default plots are available. For example a box plot.

boxplot(data)

R default graphics are useful for exploring the data. However, more modern ad-
ditional packages can be added to make plots more appealing while at the same
time trying to make it easier to create them.

42 CHAPTER 4. WORKINGWITHR

0 20 40 60 80 100

−
2

0
2

points

0 20 40 60 80 100
−

2
0

2

lines

0 20 40 60 80 100

−
2

0
2

both

0 20 40 60 80 100

−
2

0
2

both overplot

Figure 4.6: Split screen plots.

4.10. SIMPLEGRAPHICSWITHPLOT() 43

−
2

−
1

0
1

2

Figure 4.7: Function plot() automatically generated boxplot.

44 CHAPTER 4. WORKINGWITHR

Chapter 5

Workingwith tabular data in R

Before working with your own data, it helps to get a sense of how R works with
tabular data from a built-in R data set. We’ll use the data set airquality to do
this exploration. Along the way we’ll learn simple functions or methods that help
explore the data or extract subsets of data.

In this chapter:
• airquality dataset
• Learning base R commands while exploring airquality
• Graphical exploration: boxplot and histogram

NOTE

You can search through the pre-installed data sets with the function
data().

45

46 CHAPTER 5. WORKINGWITHTABULARDATA INR

5.1 Airquality dataset

The airquality dataset is built-in R so there is nothing to install or prepare, it is
already there as an R object. This data is small compared to environmental data
sets.

We can learnmore about the dataset with the help(airquality) command and
we’ll learn that it isDaily air qualitymeasurements inNew York,May to September 1973
stored within a A data frame with 153 observations on 6 variables. The source of the
data: obtained from the New York State Department of Conservation (ozone data) and the
NationalWeather Service (meteorological data) and cited by Chambers et al. (1985).

Figure 5.1: Datase ‘airquality‘ is a daily record of daily air quality measurements
in New York, May to September 1973.

Table 5.1: Airquality dataset variables

Column Name Type Details

[,1] Ozone numeric Ozone (ppb)
[,2] Solar.R numeric Solar R (lang)
[,3] Wind numeric Wind (mph)
[,4] Temp numeric Temperature (degrees F)
[,5] Month numeric Month (1–12)
[,6] Day numeric Day of month (1–31)

The values are daily readings of the air quality values for May 1, 1973 (a Tuesday) to
September 30, 1973.

5.2. EXPLORING AIRQUALITY 47

Table 5.2: Details of the airquality dataset readings

Details: Daily readings

Ozone: Mean ozone in parts per billion from 1300 to 1500 hours at Roosevelt
Island
Solar.R: Solar radiation in Langleys in the frequency band 4000–7700
Angstroms from 0800 to 1200 hours at Central Park
Wind: Average wind speed in miles per hour at 0700 and 1000 hours at
LaGuardia Airport
Temp: Maximumdaily temperature in degrees Fahrenheit at La Guardia Airport.

5.2 Exploring airquality

Base R

This sectionuses thedefaultR installation. This is sometimes called “baseR”
and the codemay be referred to as “Classic R” as compared tomoremodern
methods that we’ll explore later.

We can look at the first and last few lines of that airquality tabular data. We
already know that column names but we can list themwith:

colnames(airquality)

[1] "Ozone" "Solar.R" "Wind" "Temp" "Month" "Day"

Using functions head() and stail() we can show the default of 6 lines of data
presented with the column headers:

head(airquality)

Ozone Solar.R Wind Temp Month Day
1 41 190 7.4 67 5 1

48 CHAPTER 5. WORKINGWITHTABULARDATA INR

2 36 118 8.0 72 5 2
3 12 149 12.6 74 5 3
4 18 313 11.5 62 5 4
5 NA NA 14.3 56 5 5
6 28 NA 14.9 66 5 6

Both commands can be easily modified to select the desired number of lines:

tail(airquality, 4)

Ozone Solar.R Wind Temp Month Day
150 NA 145 13.2 77 9 27
151 14 191 14.3 75 9 28
152 18 131 8.0 76 9 29
153 20 223 11.5 68 9 30

In both cases we see that some data is missing, as represented by NA. It is often
important to know about missing data and many functions provide default and
optional arguments to deal with that.

We can use the function colSums() to easily report the existance and number of
NA for each column:

colSums(is.na(airquality))

Ozone Solar.R Wind Temp Month Day
37 7 0 0 0 0

We can get an idea of the size of the table with the function that prints its dimen-
sions:

dim(airquality)

[1] 153 6

Interestingly the length is the number of columns:

5.2. EXPLORING AIRQUALITY 49

length(airquality)

[1] 6

We can also check the structure of the dataset with:

str(airquality)

'data.frame': 153 obs. of 6 variables:
$ Ozone : int 41 36 12 18 NA 28 23 19 8 NA ...
$ Solar.R: int 190 118 149 313 NA NA 299 99 19 194 ...
$ Wind : num 7.4 8 12.6 11.5 14.3 14.9 8.6 13.8 20.1 8.6 ...
$ Temp : int 67 72 74 62 56 66 65 59 61 69 ...
$ Month : int 5 5 5 5 5 5 5 5 5 5 ...
$ Day : int 1 2 3 4 5 6 7 8 9 10 ...

This provides insight telling us that airquality is a of class data.frame, the
number of observation, the number of variables, and further details about each
variable and the first 10 values in each column.

The summary() function provides a standard stastistical output for each column:

summary(airquality)

Ozone Solar.R Wind Temp
Min. : 1.00 Min. : 7.0 Min. : 1.700 Min. :56.00
1st Qu.: 18.00 1st Qu.:115.8 1st Qu.: 7.400 1st Qu.:72.00
Median : 31.50 Median :205.0 Median : 9.700 Median :79.00
Mean : 42.13 Mean :185.9 Mean : 9.958 Mean :77.88
3rd Qu.: 63.25 3rd Qu.:258.8 3rd Qu.:11.500 3rd Qu.:85.00
Max. :168.00 Max. :334.0 Max. :20.700 Max. :97.00
NA's :37 NA's :7

Month Day
Min. :5.000 Min. : 1.0
1st Qu.:6.000 1st Qu.: 8.0

50 CHAPTER 5. WORKINGWITHTABULARDATA INR

Median :7.000 Median :16.0
Mean :6.993 Mean :15.8
3rd Qu.:8.000 3rd Qu.:23.0
Max. :9.000 Max. :31.0

For each variable (i.e. each column) this provides the minimum and maximum
value, themean, themedian. The quartile values divide the number of data points
into four more or less equal parts, or quarters.

5.3 Subsetting

It is often desirable to access only some portion of the data. Hence there are ways
to select just some columns or rowswith the square bracket [] subsettingmethod.

The first number in the brackets represents the choice of column(s). If there is
a second number after a comma , that number represents the choice for row(s).
Omitting a number means that we want the whole. Here are useful examples
adapted from “Introduction to R”1.

SUBSETTING

Take the time to explore the following commands:

airquality[] # the whole data frame (as a data.frame)
airquality[1, 1] # first element in the first column (as a vector)
airquality[1, 6] # first element in the 6th column (as a vector)
airquality[, 1] # first column in the data frame (as a vector)
airquality[1] # first column in the data frame (as a data.frame)
airquality[1:3, 3] # first three elements in the 3rd column (as a vector)
airquality[3,] # the 3rd row (as a data.frame)

1https://cengel.github.io/R-intro/‘

https://cengel.github.io/R-intro/
https://cengel.github.io/R-intro/

5.3. SUBSETTING 51

airquality[1:6,] # the 1st to 6th rows, equivalent to head(airquality)
airquality[c(1,4),] # rows 1 and 4 only (as a data.frame)
airquality[c(1,4), c(1,3)] # rows 1 and 4 and columns 1 and 3 (as a data.frame)
airquality[, -1] # the whole data frame, excluding the first column
airquality[-c(3:153),] # equivalent to head(airquality, 2)

Here is an example using this method to compute the average temperature (vari-
able Temp) in the 4th column by giving the subset as an argument to the mean()
function:

mean(airquality[, 4])

[1] 77.88235

This notation is useful and does the job. The command could be understood
as the English phrase: “take the mean of all the values located in the 4th column of the
airquality dataset.”

Another subsetting method typical in R is to use the name of the object and the
name of the column separated by a $ sign. For example the column for tempera-
ture would be designated as airquality$Temp. So we could also use that nota-
tion to compute. This time let’s calculate the median:

median(airquality$Temp)

[1] 79

Here is another example calling for the summary of just one column, here the
Ozone column.

summary(airquality$Ozone)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
1.00 18.00 31.50 42.13 63.25 168.00 37

However, it may easier to work with the with() function that allows to simply
use the column name:

52 CHAPTER 5. WORKINGWITHTABULARDATA INR

with(airquality, mean(Temp))

[1] 77.88235

This command could be spoken inEnglish as “workingwith the datasetairquality
calculate the average of the values in the column labeled Temp.”

NOTE:

The more modern methods for working with tabular data is to use the
Tidyverse package dplyr as will be explored later.(Section 8.)

5.4 Base RGraphics exploration

R provides useful default plottingmechanisms that are useful to explore the data
the most rapidly. Other packages can later be used to make the plots prettier.

Most R graphics functions will have defaults that help provide themostmeaning-
ful plot. For example we can ask for a boxplot:

boxplot(airquality)

The result is alright but it is clear to see that the scale has been chosen to plot the
largest valueswhichare fromtheSolar.R column, therefore “crushing” theother,
smaller values.

Let’s compare the results of plotting the temperature from column 4with the two
subsettingmethodswe just learned. For this we’ll split the graphical page to 1 row
and 2 columns first, and then issue the plotting commands:

par(mfrow = c(1,2))
hist(airquality[,4])
with(airquality, hist(Temp))

5.4. BASE RGRAPHICS EXPLORATION 53

Ozone Solar.R Wind Temp Month Day

0
50

15
0

25
0

Figure 5.2: Default boxplot of airquality dataset.

par(mfrow = c(1,1))

We can note that the title of the plot and the name for the horizontal axis reflect
what is written within the hist() function. This is just a default. There are ways
to change what is written there as detailed in the help.

Nowwemay rather want to see a boxplot for the temperature.

with(airquality, boxplot(Temp))

This is not super informative, and simply is a larger version of just theTemp values
seen in figure 5.2.

54 CHAPTER 5. WORKINGWITHTABULARDATA INR

Histogram of airquality[, 4]

airquality[, 4]

F
re

qu
en

cy

60 70 80 90 100

0
5

10
15

20
25

30
35

Histogram of Temp

Temp

F
re

qu
en

cy

60 70 80 90 100
0

5
10

15
20

25
30

35

Figure 5.3: Comparing the plot of 2 subset formats.

5.5 Boxplots

I would be more interesting to plot the temperature separately for each month.
This is possible by adding one more term that specifies that we want to “plot tem-
perature as as function of the month.” This is accomplished with the tilde symbol ~
between the two variables that be be read in English with the phrase “as a function
of.”

with(airquality, boxplot(Temp ~ Month))

It would be possible to add a color, choosing from the default 9 colors in R that are
numbered 0-8. 0 is the default white. The next colors have also a name that can
be printed by the palette() function:

5.5. BOXPLOTS 55

60
70

80
90

Figure 5.4: Boxplot of temperature of airquality dataset.

palette()

[1] "black" "#DF536B" "#61D04F" "#2297E6" "#28E2E5" "#CD0BBC" "#F5C710"
[8] "gray62"

Therefore we could color the boxes individually by simply specifying a vector of
number as we learned to do with the combine c() function:

with(airquality, boxplot(Temp ~ Month, col = c(1,2,3,4,5)))

This can help to understand the notion of factor, used for categorical variable
stored it as levels. We can force R to consider a variable as.factor and that will
also list the different levels of that factor.

56 CHAPTER 5. WORKINGWITHTABULARDATA INR

5 6 7 8 9

60
70

80
90

Month

Te
m

p

Figure 5.5: Boxplot of temperature as a function of the month of airquality
dataset.

with(airquality, as.factor(Month))

[1] 5 6 6 6 6 6 6
[38] 6 7 7 7 7 7 7 7 7 7 7 7 7 7
[75] 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

[112] 8 8 8 8 8 8 8 8 8 8 8 8 9
[149] 9 9 9 9 9
Levels: 5 6 7 8 9

We can the refine the command to ask for just the levels:

levels(with(airquality, as.factor(Month)))

5.5. BOXPLOTS 57

5 6 7 8 9

60
70

80
90

Month

Te
m

p

Figure 5.6: Boxplot of temperature as a function of the month of airquality
dataset with simple colors.

[1] "5" "6" "7" "8" "9"

With this knowledge we could now color the boxplot without having to type spe-
cific colors, or know howmany to use by specifying that we want to color by level:

with(airquality,
boxplot(Temp ~ Month,

col = levels(with(airquality,
as.factor(Month)))))

Since the levels are 5, 6, 7, 8, 9 the colors of this plot are different than the plot in
figure 5.6. Of course this command is not easy to understand as it is. It is usual
to create intermediate varibables tomake the code easier to read. For examplewe
could create a variable called MyCol to contain the levels.

58 CHAPTER 5. WORKINGWITHTABULARDATA INR

5 6 7 8 9

60
70

80
90

Month

Te
m

p

Figure 5.7: Using levels to automatically color boxplot.

5.6 Scatter plots

Another type of useful plot is a scatter plot where “points” with an “𝑥” and a “𝑦”
coordinates are plotted. For example we could plot the Ozone levels as a function
of the temperature Temp. This can be written using the with() function:

with(airquality, plot(Ozone ~ Temp))

As we did with the boxplot we could also color each circle as a function of the
month. We could also change the circlewith another geometrical formalso based
on themonth. Typically, to avoid “crowded” commands with toomany things go-
ing on, it is best to decompose the options on separate commands.

All we need to do is assign the levels of the months into a separate variable or a
user-defined R object we can call mlev for “month levels” for example:

5.6. SCATTER PLOTS 59

60 70 80 90

0
50

10
0

15
0

Temp

O
zo

ne

Figure 5.8: A scatter plot can show trend.

mlev <- levels(with(airquality, as.factor(Month)))

This command extracts the level values but the mlev is of class character and con-
tains 5, 6, 7, 8, 9 which are just the numbers shown as characters.

We have seen that for the plot() function the color option is called col. For the
shape option it is called pch which stands for print character. We can use those
values to change both the color and the character to be displayed:

with(airquality, plot(Ozone ~ Temp,
pch = mlev,
col = mlev))

To make use the values within mlev to change the geometric shape we can also
force them as a numeric value:

60 CHAPTER 5. WORKINGWITHTABULARDATA INR

5 6

78
567

8 5
67 89 5

6

7

8

9
5

6
7

8
7

8

9

5
7

9

5
86

7

8
9 5

6

7

8

5

6

7

89
5

7

8

5

6
7

8

9
5

6

9

5

6

7

8

9
56

7

8
9

5

6

7

8

9

5

8
9

5

7

8

9
5
6

7
8

5

6

7 9

5

67
8

9 5

6

7
8

9567

8

9
5

67

8

9 5
6

78
9

5

6
7

8
5 67

60 70 80 90

0
50

10
0

15
0

Temp

O
zo

ne

Figure 5.9: Addingmonth levels both as color and number plotted.

with(airquality, plot(Ozone ~ Temp,
pch = as.numeric(mlev),
col = mlev))

This will call one of the predefined geometric plot characters built in R.

Plot symbols

There are 26 default geometric symbols in R calledwith pch= option. Points
can be omitted from the plot using pch = NA. pch 21 to 25 are open sym-
bols that can be filled by a color.

5.7. SIMPLE LINEARREGRESSION 61

60 70 80 90

0
50

10
0

15
0

Temp

O
zo

ne

Figure 5.10: Addingmonth levels both as color and number plotted.

5.7 Simple linear regression

Thesimple function lm() creates a linearmodel of the data andwill omit NAs if any
automatically. For this example it suffices. Other options exists, or computations
can ne one to impute the missing data, for example replacing each NA with the
average (mean) of all values. The result of lm() is a slope and an intercept which
describes a regression line. This can help show a trend, but it is also important
to keep in mind that lm() is a simple model and that other regression methods
exist.

We can compute a simple regression line for the Ozone vs Temp by providing the
values, as in a subset. Themost elegant writing is by using the with() function:

model1 <- with(airquality, lm(Ozone ~ Temp))
model1

62 CHAPTER 5. WORKINGWITHTABULARDATA INR

1 2 3 4 5

0
1

2
3

4
5

6
7

0 1 2 3 4
0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24 25

Figure 5.11: 26 pch geometric symbols for plots are numbered 0 to 25. Default is
number 1: open circle.

Call:
lm(formula = Ozone ~ Temp)

Coefficients:
(Intercept) Temp

-146.995 2.429

We could use str() on the new model1 object to note that it has a complex struc-
ture. Suffice to mention for now that the 2 most important values can also be
called with model1$coefficients

We can now add the regression line to the existing scatter plot with the abline()
function used to add one or more straight lines through the current plot.

5.7. SIMPLE LINEARREGRESSION 63

with(airquality, plot(Ozone ~ Temp, pch = mlev, col = mlev))
abline(model1, col = "blue", lwd = 3)

5 6

78
567

8 5
67 89 5

6

7

8

9
5

6
7

8
7

8

9

5
7

9

5
86

7

8
9 5

6

7

8

5

6

7

89
5

7

8

5

6
7

8

9
5

6

9

5

6

7

8

9
56

7

8
9

5

6

7

8

9

5

8
9

5

7

8

9
5
6

7
8

5

6

7 9

5

67
8

9 5

6

7
8

9567

8

9
5

67

8

9 5
6

78
9

5

6
7

8
5 67

60 70 80 90

0
50

10
0

15
0

Temp

O
zo

ne

Figure 5.12: Adding the simple regression line on the scatter plot.

64 CHAPTER 5. WORKINGWITHTABULARDATA INR

Exercise:

We saw that Ozone increases with Temp.

Using a scatter plot and an optional linear model regression can you tell
what is the effect of Wind?

5.8 Fancier Graphics exploration

For this section we’ll call on ggplot2 which is a package included in the
Tidyverse suite. If you need to install this go to section 1.2 and proceed
with the installation.

It may be useful to skip this section and review chapter 11 before spending
too much time if this section proves difficult.

The ggplot2 package is now the “new standard” and while it is useful to know
the graphics commands from R base, it is becomingmore andmore important to
learn how to use this package.

There is a main command called ggplot() and a somewhat simpler command
called qplot() (with a single q) that resembles a little more the graphics com-
mands we saw earlier. (qplot() is short for “quick plot”.)

First we need to activate or load intomemory the ggplot2 package. This is accom-
plished with the library() function.

library(ggplot2)

If you have an error make sure that you have previously installed Tidyverse or
the single ggplot2 package (see section 1.2.)

5.8. FANCIERGRAPHICS EXPLORATION 65

5.8.1 Boxplots

Let’s start by trying to reproduce some of the plots with these new commands.
Here is how to create a box plot of the temperature (columnTemp) as a function of
the month (column Month.) We also need to specify that we want to use Month
as the coloring factor. We don’t need to specify that we want the levels as qplot
is smart enough to understand that. To obtain a boxplot we ask for a type of plot
“geometry”.

qplot(Month, Temp, data = airquality,
geom = "boxplot", color = as.factor(Month))

60

70

80

90

5 6 7 8 9
Month

Te
m

p

as.factor(Month)

5

6

7

8

9

Figure 5.13: qplot version of Temperature vs Month.

Note the order of the variables that are written here in reverse order as compared
to the Base R commands of figure 5.7.

Exercise 5.1. What would happen if the order of the variables Month and Temp

66 CHAPTER 5. WORKINGWITHTABULARDATA INR

were inverted here?

What about the base R version that created figure 5.7?

Some improvement and tweaking are always possible, but for a first plot it is not
bad.

We can improve the plot by transforming some of the data, namely by making
the Month variable a factor rather than just a numeric entry as was shown by the
str() function in section 5.2.

To avoidmaking changes to the original data,we’ll copy theairqualitydata into
anewobject thatwe can callaq for simplicity. Fromthat point theoriginal dataset
will not be changed and we’ll only affect the aq object.

aq <- airquality

We can now transform the Month column using one of the subsetting methods
we saw previously (section 5.3.) Both aq$Month and aq[, 5] would work. The
following command will overwrite the Month column with its modified status as
a factor. The command q$Month <- factor(aq$Month)would provide the fac-
tor definition. But we can add a modification that will change the “label” of the
factors from numbers to the name of the month in the calendar thanks to the
month.abb parameter that can convert the month number into an abbreviated
English name.

aq$Month <- factor(aq$Month,
levels = 5:9,
labels = month.abb[5:9],
ordered = TRUE)

Let’s see if that worked with some test commands for both aq and airquality:

class
class(airquality$Month)

5.8. FANCIERGRAPHICS EXPLORATION 67

[1] "integer"

class(aq$Month)

[1] "ordered" "factor"

levels
levels(airquality$Month)

NULL

levels(as.factor(airquality$Month))

[1] "5" "6" "7" "8" "9"

levels(aq$Month)

[1] "May" "Jun" "Jul" "Aug" "Sep"

We can now redo the plot:

qplot(Month, Temp, data = aq, geom = "boxplot", color = Month) +
theme(legend.position = "none")

Exercise 5.2. Exercise

Create 4 plots of boxplot on a single page colored by month for the following:

• Ozone vsMonth
• Solar.R vsMonth
• Temp vsMonth
• Wind vsMonth

Unlike Base R graphics the par(mfrow = c(2,2)) command would not do the
job.

For thiswe need to rely on a newer package that helps publish ggplot style graph-
ics.

68 CHAPTER 5. WORKINGWITHTABULARDATA INR

60

70

80

90

May Jun Jul Aug Sep
Month

Te
m

p

Figure 5.14: Better qplot version of Temperature vs Month.

Therefore we need to install the package ggpubr for example with command
install.packages("ggpubr") (dependent packages will also be updated.)
From this package, the function ggarrange() can be used to list the plots
sequentially, specifying the number of rows and columns on the final page at the
end. We can also optionally add large labels.

library(ggpubr)

ggarrange(
qplot(Month, Ozone, data = aq, geom = "boxplot", color = Month),
qplot(Month, Solar.R, data = aq, geom = "boxplot", color = Month),
qplot(Month, Temp, data = aq, geom = "boxplot", color = Month),
qplot(Month, Wind, data = aq, geom = "boxplot", color = Month),
labels = c("A", "B", "C", "D"),

5.8. FANCIERGRAPHICS EXPLORATION 69

ncol = 2, nrow = 2)

0

50

100

150

May Jun Jul Aug Sep
Month

O
zo

ne

Month

May

Jun

Jul

Aug

Sep

A

0

100

200

300

May Jun Jul Aug Sep
Month

S
ol

ar
.R

Month

May

Jun

Jul

Aug

Sep

B

60

70

80

90

May Jun Jul Aug Sep
Month

Te
m

p

Month

May

Jun

Jul

Aug

Sep

C

5

10

15

20

May Jun Jul Aug Sep
Month

W
in

d

Month

May

Jun

Jul

Aug

Sep

D

In this example the legend is repetitive and could be omitted from
at least 3 of the plots. This can be accomplished by adding +
theme(legend.position="none") for each of the plots for which we
want to remove the legend. For example:

qplot(Month, Temp, data=aq, geom="boxplot", color=Month) +
theme(legend.position="none")

5.8.2 Scatter plots

We can also create a scatter plot easily. Remember that we made Month a factor
above (5.8.1.)

70 CHAPTER 5. WORKINGWITHTABULARDATA INR

qplot(Temp, Ozone, data = aq, col = Month)

Warning: Removed 37 rows containing missing values (geom_point).

0

50

100

150

60 70 80 90
Temp

O
zo

ne

Month

May

Jun

Jul

Aug

Sep

Figure 5.15: Scatter plot for Ozone vs Temperature.

We can also add a linear regressionwhich will be calculated directly by specifying
the method as "lm". Since Month is a factor the linear regression will be calcu-
lated separately for each month automatically. The SE option is a request to not
print the standard error that would make the plot cluttered.

qplot(x = Temp, y = Ozone, data = aq,
col= Month,
geom = c("point", "smooth"),
method = "lm",
se = FALSE)

`geom_smooth()` using formula 'y ~ x'

5.8. FANCIERGRAPHICS EXPLORATION 71

0

50

100

150

60 70 80 90
Temp

O
zo

ne

Month

May

Jun

Jul

Aug

Sep

Figure 5.16: Scatter plot for Ozone vs Temperature, linear regression for each
month.

To compute the linear regression as we did with the classic R plot all we need to
do is to specify that we want to use month as a numeric value. We can also now
turn SE to TRUE if we wish:

qplot(x=Temp, y=Ozone, data=aq,
col=as.numeric(Month),
geom=c("point", "smooth"),
method="lm",
se = T)

`geom_smooth()` using formula 'y ~ x'

The result is that the legend now reports Month as a continous data, which is not
correct. The legendcould removedbyadding+ theme(legend.position="none")
as we saw above.

72 CHAPTER 5. WORKINGWITHTABULARDATA INR

0

50

100

150

60 70 80 90
Temp

O
zo

ne

1

2

3

4

5
as.numeric(Month)

Figure 5.17: Scatter plot for Ozone vs Temperature. Linear regression for all
months.

If we do not specify themethod by removing method="lm"we obtain the default,
more complex, non linear regression line. In that case the “loess” regression is
used.

qplot(x=Temp, y=Ozone, data=aq,
col=as.numeric(Month),
geom=c("point", "smooth"),
se = T) +

theme(legend.position="none")

`geom_smooth()` using method = 'loess' and formula 'y ~ x'

These examples above are to showwhat is possible with qplotwhich is the

5.8. FANCIERGRAPHICS EXPLORATION 73

0

50

100

150

60 70 80 90
Temp

O
zo

ne

Figure 5.18: Scatter plot for Ozone vs Temperature. Linear regression for all
months.

quick plot version of the more fancy ggplot.

Using Internet search is useful to find examples of code that help. For ex-
ample the linear regression additionwas found on this stack overflowpage:
I need to add linear regression trend lines to qplot2.

https://stackoverflow.com/questions/32751126/i-need-to-add-linear-regression-trend-lines-to-qplot-from-ggplot2

74 CHAPTER 5. WORKINGWITHTABULARDATA INR

Chapter 6

Importing data

Importing data is rather easy in R but that may also depend on the nature of the
data to be imported and from what format. For environmental studies data are
usually in tabular form such as a spreadsheet or a comma-separated file (.csv.)

In this chapter:
• Importing from local files
• Downloading Nhanes data
• Exploring PFAS_I data
• Merging data files

The way or method used to import the data in R will have fundamental implica-
tions on the class of the object containing the data just read and therefore what
methods can later be used to analyze the data. In Classic R we’ll most likely want
to have the data in the data.frame class as it is the most versatile and useful.

Base R has a series of read functions to import tabular data from plain text files
with columns delimited by: space, tab, comma, with orwithout a header containing
the column names. With an added package it is also possible to import directly
from aMicrosoft Excel spreadsheet format or other foreign formats from various
sources.

75

76 CHAPTER 6. IMPORTINGDATA

6.1 Importing from local files

In base R the standard commands to read text files are based on the
read.table() function. The derived functions exist in 2 flavor to accom-
modate USA and European conventions for decimal point (a comma in Europe)
and comma separator (a semicolon in Europe.) The following table lists the
collection of the base R “read” functions. For more details use the help command
help(read.table) that will display help for all.

Table 6.1: Base R read functions

Function
name

Assumes
header Separator Decimal File type Comment

read.table() No none . .txt USA
read.csv() Yes , . .csv USA
read.csv2() Yes ; , .csv Europe
read.delim() Yes Tab . .txt USA
read.delim2() Yes Tab , .txt Europe

A similar approach is used to write the data out but the *delim() version do
not exist, but can be managed with specifying the tab delimiter within the
write.table() function.

Assuming that you have a file name test.csv containing these 5 columns of data

c1,c2,c3,c4,c5
1.481,3.478,4.246,3.687,6.051
1.73,5.825,4.526,6.754,0.15
2.556,6.275,2.525,6.368,5.479
2.828,4.77,5.12,3.744,4.01
2.989,4.396,2.078,4.237,4.618
3.122,6.317,5.414,3.551,5.607

The command to read such a file into a user defined object named testwould be:

6.2. DOWNLOADINGNHANESDATA 77

Do not run
test <- read.csv("test.csv")

6.2 DownloadingNhanes data

R is a great “statistical software for data analysis” but there are other compet-
ing software in Industry that can even be expensive such as SPSS, STATA, JMP,
Matlab, and SAS.

NHANES data is saved in a SAS transport file (.xpt) created by the SAS XPORT
engine. This is what is available on the NHANES web site. Fortunately they also
provide methods to import this data in R by using the foreign package (see Ap-
pendix C.)

TASK: Install package. foreign.

It is necessary to install this package to be able to follow the code below and
import the NHANES data. You can use install.packages("foreign")
or follow alternate direction in section 1.2.

See also Appendix D.4 for an alternate method using the haven package
instead. See Appendix D.5 for code to download and save .XPT files onto
your computer.

Relax

Youmay be given a pre-downloadeddata set for your homework exercise(s).

However, it is always useful to know where and how to get your own data.
This is the purpose of this section.

https://CRAN.R-project.org/package=foreign

78 CHAPTER 6. IMPORTINGDATA

Other options See Appendix D and section 6.4 for more details.

The relevant .XPTfiles used in this bookwere combined into a .zip archive
that can be downloaded: XPTs.zip

The combined “Master4” file can also be downloaded as well as a .csv file
with either:

– Master4.csv
– Master4.csv.zip

6.2.1 PFAS_I

Figure 6.1: Perfluorooctanoic acid (PFOA) is used worldwide as an industrial sur-
factant in chemical processes and as amaterial feedstock, and is a health concern
and subject to regulatory action and voluntary industrial phase-outs.

As an example we’ll download the file resulting of the blood serum analysis of Per-
fluoroalkyl and Polyfluoroalkyl substances (PFAS_I) used in multiple commercial applica-
tions including surfactants, lubricants, paints, polishes, food packaging and fire-retarding
foams. More information can be read from the documentation page1 (that also
contains a link describing all the details for the laboratory methods used.)

1https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/PFAS_I.htm

https://static-bcrf.biochem.wisc.edu/courses/Tabular-data-analysis-with-R-and-Tidyverse/NHANES-2016-2017/XPTs.zip
https://static-bcrf.biochem.wisc.edu/courses/Tabular-data-analysis-with-R-and-Tidyverse/NHANES-2016-2017/Master4.csv
https://static-bcrf.biochem.wisc.edu/courses/Tabular-data-analysis-with-R-and-Tidyverse/NHANES-2016-2017/Master4.csv.zip
https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/PFAS_I.htm
https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/PFAS_I.htm

6.2. DOWNLOADINGNHANESDATA 79

For more information:

– Perfluoroalkyl and Polyfluoroalkyl Substances2 on NIEHS / NIH web
site.

– Perfluoroalkyl and Polyfluoroalkyl Substances in the Environment:
Terminology, Classification, and Origins3 by Buck et al. (2011). (See
their Table 1 in Appendix F.)

The NHANES tutorial R code (Appendix C) is for the demographic data in file
DEMO_I.XPT:
DO NOT RUN
Download NHANES 2015-2016 to temporary file
download.file("https://wwwn.cdc.gov/nchs/nhanes/2015-2016/DEMO_I.XPT",

tf <- tempfile(),
mode="wb")

Create Data Frame From Temporary File
DEMO_I <- foreign::read.xport(tf)

The first command using the download.file() function accomplishes 2 tasks,
it will:

1. download the file from the web link
2. save the file to a temporary file named tf, using the transfermode coded w

forwrite andb for binary. (Formore info see detail onfile openfopenoptions
4.)

This “trick” avoids saving the file locally to the hard drive. Should one want to do
that the command could be simplified by replacing tf <- tempfile()with the
name of a file within quotes such as DEMO_I.XPT.

Thesecondcommanduses the foreign package function read.xport() to read

4http://www.cplusplus.com/reference/cstdio/fopen/

https://www.niehs.nih.gov/health/topics/agents/pfc/index.cfm
https://pubmed.ncbi.nlm.nih.gov/21793199/
https://pubmed.ncbi.nlm.nih.gov/21793199/
http://www.cplusplus.com/reference/cstdio/fopen/

80 CHAPTER 6. IMPORTINGDATA

thedata into adata framenamedDEMO_I. Ifwehad saved thefile to the local drive
we would replace tfwith DEMO_I.XPT.

NOTATION:The use of :: notation in foreign::read.xport(tf) tells R
to use the function read.xport() from the foreign packagewithout the
need to use the library() function first. This is common for cases where
we only want to use a function once.

Alternate package: An alternate option to the code provided is using the
package haven and download the file instead with:

DEMO_I <- read_xpt(url(
"https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/DEMO_I.XPT"))

The data can be found on the web site starting at: https://wwwn.cdc.gov/nchs/
nhanes/ContinuousNhanes/ and then:

• Click on “Laboratory data” (figure 6.2)
• Scroll and find the 2015-1016 entry

The entry is specified to be only 376.7 Kb in size.

TASK:Download file PFAS_I.XPT.

The data file direct link is:
https://wwwn.cdc.gov/nchs/nhanes/2015-2016/PFAS_I.XPT

We can download the file as in the above example without the need to save the
.XPT file on the local drive.

Download NHANES PFAS_I 2015-2016 data to temporary file
download.file("https://wwwn.cdc.gov/nchs/nhanes/2015-2016/PFAS_I.XPT",

tf <- tempfile(),
mode="wb")

https://wwwn.cdc.gov/nchs/nhanes/ContinuousNhanes/
https://wwwn.cdc.gov/nchs/nhanes/ContinuousNhanes/
https://wwwn.cdc.gov/nchs/nhanes/2015-2016/PFAS_I.XPT

6.3. EXPLORINGPFAS_I DATA 81

Figure 6.2: Finding NHANES 2015-2016 data.

Create Data Frame PFAS_I From Temporary File
PFAS_I <- foreign::read.xport(tf)

class(PFAS_I)

[1] "data.frame"

We now have a data frame named PFAS_I.

6.3 Exploring PFAS_I data

PFAS_I is of class data.frame. Themeaning of the columnheaders can be found
in the NHANES documentation page https://wwwn.cdc.gov/Nchs/Nhanes/2015-
2016/PFAS_I.htm (also found in Appendix E.)

https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/PFAS_I.htm
https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/PFAS_I.htm

82 CHAPTER 6. IMPORTINGDATA

The first and last three codes are in the table shown here.

Table 6.2: PFAS_I codes for sum data

Code Description

SEQN Respondent sequence number
LBXMFOS Sm-PFOS (ng/mL)
LBDMFOSL Sm-PFOS Comment Code

Ifwe read the code information on theweb page or onAppendix Ewe can see that
some columns are “comment” columns. These report the “success” of the analysis
with a value of 0 at or above the detection limit, a value of 1 below lower detection limit
and a dot . for missing values. One more thing to notice is that the text entry
describing these columns is written in multiple ways:

• Comment Code: 5 times
• Comt Code: 4 times
• comment : 1 time

Therefore there are 10 “comment” columns that alternate with data columns.

We can also note that the data columns all contain an X in their name while the
comment columns contain the letter D.The first 2 columns of SEQN and WTSB2YR
are not part of that naming pattern.

REVIEWclassic Rmethods:

This is the perfect time to review the classicmethods that are built-in R that
we explored with the airquality dataset with functions:

dim(), length(), str(), summary(), colnames(), head() and tail(),
colSums(is.na()). etc.

Since theywere already visited those exact commandswill not bedeveloped

6.3. EXPLORINGPFAS_I DATA 83

again but we’ll see how to do some specific manipulations by adding op-
tional arguments in some of the commands.

We’ll start by exploring the data graphically.

6.3.1 PFAS_I boxplot

The base R graphics functions are rather smart to make a graph quickly with
little information. We could for example use boxplot(PFAS_I) but we would
quickly note that the first column SEQN would “crush all other columns simply
because the values for this column that represents the”Respondent sequence
number” (the code for each individual) has range 83736 to 93700 as reported
by command summary(PFAS_I[,1]). Therefore as a first approach it would be
useful to be able to plot everything without the first column. This is accomplish
with subsetting (section 5.3) but using a minus sign to indicate that we want
to remove the designated column. The command to remove the first command
would be:

Remove the first columns
boxplot(PFAS_I[, -1])

We just need to remember that within the square brackets the first item repre-
sents rows and the second represents columns. Nothing written means take ev-
erything. In that sense PFAS_I[,] is exactly the same as simply PFAS_I. We
just specify -1 for columns to remove the first one.

However, the next “annoying” thingwill be that data from column2 is now “crush-
ing” the other boxes So we now want to remove the first 2 columns: SEQN and
WTSB2YR. How do we do that? there are only 2 spots within the square bracket.

To remove the 2 columns we can take advantage of the combine function c() to
gather the numbers of the columns and add aminus sign before it to specify their
removal. We can thus write:

84 CHAPTER 6. IMPORTINGDATA

Remove the first and second columns
boxplot(PFAS_I[, -c(1:2)])

This is still not satisfying as there are a lot of “outliers” i.e. values that extend
beyond the box. And once again the boxes are all “crushed”.

Oneway to have a better image is to limit the values that are plotted in the vertical
(y) axis by using the optional parameter ylim =which requires 2 numbers speci-
fying a lower and an upper limit, for example from 0 to 10. Note that once again
we need to use the combine c() function, something that is ubiquitous in R code:

Remove the first and second columns
limit vertical axis with ylim
boxplot(PFAS_I[, -c(1:2)], ylim = c(0,10))

All four attempts can be summarized as:

par(mfrow = c(2,2))
All data
boxplot(PFAS_I)
Remove the first columns
boxplot(PFAS_I[, -1])
Remove the first and second columns
boxplot(PFAS_I[, -c(1:2)])
limit vertical axis with ylim
boxplot(PFAS_I[, -c(1:2)], ylim = c(0,10))

par(mfrow = c(1,1))

This has not been so useful yet, but we are getting closer perhaps!

We noted earlier (section 6.3) that besides the first 2 columns, every other column
was a “comment” column containing only 0, 1, anda few .. Therefore it is not very
useful to include them in the plot. We can further realize that they are all columns
with an odd number, and we can create a list of these numbers from the seq()
function (section 4.8.1).

6.3. EXPLORINGPFAS_I DATA 85

SEQN LBXPFNA LBDBFOAL

0e
+

00
4e

+
05

8e
+

05

WTSB2YR LBXPFUA LBXNFOS

0e
+

00
4e

+
05

8e
+

05

LBXPFDE LBXPFUA LBXNFOS

0
20

40
60

80
10

0

LBXPFDE LBXPFUA LBXNFOS

0
2

4
6

8
10

Figure 6.3: Summary of 4 attempts

86 CHAPTER 6. IMPORTINGDATA

Wewant to omit columns1 and2, andfinishwith column21 since the last column
22 is a “comment” column. So startingwith 3 and stepping by 2will provide all odd
numbers between 3 and 21.

seq(3,21, by = 2)

[1] 3 5 7 9 11 13 15 17 19 21

We can also remember that using a log() function may give the data a better
spread. If this does not work for the boxplot perhaps it will work for a histogram.
We could also noted in the previous attempts that the labels for the columns are
printed on the horizontal axis, but not all of them due to spacing. We can there-
fore add an additional option which will rotated the bottom labels by 90 degrees
so that all of them can be printed. To find this option one would have to learn
about it in an example, as finding it by help is tricky unless we know where to
look, which would be the list of paramters for graphics found with help(par).
The command is las=2 and that is most likely an abbreviation for label axis style.

The following command combines all of that. We are asking for a boxplot from
PFAS_I, the values will be changed to the natural log, only for columns that are
odd and the label will be rotated on the horizontal axis:

boxplot(log(PFAS_I[, seq(3,21, by = 2)]), las=2)

There aremany fancyways to alter base R graphics, a very detailed example can be
found in this blog5 or this published “excercise” Fixing Axes and Labels in R Plot
Using Basic Options6.

However, most people now are switching to more modern plotting methods for
making the final, fancy or published version. However, it is still very useful to
know how to use R base graphics to explore data as they are usually simpler to
apply at first.

5https://www.tenderisthebyte.com/blog/2019/04/25/rotating-axis-labels-in-r/
6https://rpubs.com/riazakhan94/297778

https://www.tenderisthebyte.com/blog/2019/04/25/rotating-axis-labels-in-r/
https://rpubs.com/riazakhan94/297778
https://rpubs.com/riazakhan94/297778
https://www.tenderisthebyte.com/blog/2019/04/25/rotating-axis-labels-in-r/
https://rpubs.com/riazakhan94/297778

6.3. EXPLORINGPFAS_I DATA 87

LB
X

P
F

D
E

LB
X

P
F

H
S

LB
X

M
PA

H

LB
X

P
F

N
A

LB
X

P
F

U
A

LB
X

P
F

D
O

LB
X

N
F

O
A

LB
X

B
F

O
A

LB
X

N
F

O
S

LB
X

M
F

O
S

−2

0

2

4

Figure 6.4: PFAS_I boxplot with log values for odd columns and rotated labels.

88 CHAPTER 6. IMPORTINGDATA

6.3.2 PFAS_I histogram

We can perhaps quickly apply what we just learned to making histograms of the
data.

The difference here is that each histogramwould need to be a separate graph. So
just replacing boxplot by histwill not work.

Let’s start by looking at just one of them. Column 21 is the sum of all others. We
can test also if it is necessary to use the log() function. We can plot both original
and logged values in one image. We can also use remember and use the other
subset method using the with() function which will make the title of the plot
nicer (see (section 5.4.)

par(mfrow = c(1,2))
original data
hist(PFAS_I[,21])
with(PFAS_I, hist(LBXMFOS))
natural log applied
hist(log(PFAS_I[,21]))
with(PFAS_I, hist(log(LBXMFOS)))

par(mfrow = c(1,1))

NOTE For histograms the options breaks = 25 could be added (possibly
with a different number) to bin into smaller portions andmake a finer plot.
Bydefault thehistogramwill be a “frequencies” version that canbe changed
to a “densities” version so that the histogram has a total area of one. This is
done by adding freq = FALSE. See help(hist).

So how dowe plot all of the histograms for all columns? This ismore complicated
that it appears at first thought. On discussion forums it would be possible to find
answers that have R code on many lines looking like a full program. However,
there is a simple solution but it uses a rather challenging base R function that is
difficult to understand for most people.

6.3. EXPLORINGPFAS_I DATA 89

Histogram of LBXMFOS

LBXMFOS

F
re

qu
en

cy

0 5 10 15 20

0
20

0
60

0
10

00

Histogram of log(LBXMFOS)

log(LBXMFOS)

F
re

qu
en

cy

−3 −1 0 1 2 3

0
10

0
20

0
30

0
40

0

Figure 6.5: PFAS_I histogram for summed values in column 21 labeled LBXMFOS.

It would be very difficult to also apply the log() function to the data. Let’s create
a small subset of 4 of the 10 data columns. We’ll store that data in a simple named
object L after which we can verify some properties:

L <- log(PFAS_I[, c(5,9,15,21)])
class(L)

[1] "data.frame"

colnames(PFAS_I[, c(5,9,15,21)])

[1] "LBXPFHS" "LBXPFNA" "LBXNFOA" "LBXMFOS"

Taking into account that we’ll have 4 plots the “magical” command is now simply:
lapply(L, hist).

90 CHAPTER 6. IMPORTINGDATA

par(mfrow = c(2,2))
lapply(L, hist)

Histogram of X[[i]]

X[[i]]

F
re

qu
en

cy

−3 −2 −1 0 1 2 3

0
20

0

Histogram of X[[i]]

X[[i]]

F
re

qu
en

cy

−3 −2 −1 0 1 2

0
30

0
70

0

Histogram of X[[i]]

X[[i]]

F
re

qu
en

cy

−3 −2 −1 0 1 2 3

0
30

0

Histogram of X[[i]]

X[[i]]

F
re

qu
en

cy

−3 −2 −1 0 1 2 3

0
20

0

Figure 6.6: Creating multiple histograms with one command

par(mfrow = c(1,1))

Some additional options can be added to change the historgram but the format
is different that when the hist() function is used. In this case the additional
parameters would need to follow hist separated by a comma. For example to
add 2 parameters:
lapply(L, hist, breaks=25, freq = FALSE).

Each title “Histogram of X[[i]]” could be changed to the same title for all with e.g.
main = "Histogram" or compltely suppressed with main = "". But to pro-
vide the name of the column either in the title or on the axis would require even
more sophisticated commands.

6.3. EXPLORINGPFAS_I DATA 91

ADVANCEDThe solution for this calls on the lapply() function that can
be difficult to understand. This whole family of functions is described in
details on the guru99web site:
https://www.guru99.com/r-apply-sapply-tapply.html

These functions can be very useful and are found as suggestions on forums.

6.3.3 Fancier boxplot with qplot

This section uses ggplot2 which is a package included in the Tidyverse
suite. If you need to install this go to section 1.2 and proceed with the in-
stallation.

This section is here to illustrate another way to create the same or similar
plots as we did with base R. It may be confusing at first, in which case this
section can be skipped to better come back later. Perhaps after learning
more from links in chapter 11.

Most ggplot examples online assume that some of the columns of the data can be
used to plot against other columns as we did for the airquality plots using the
easier qplot() (section 5.8.)

The data we have in PFAS_I are all number data and we’d like to plot them all as
we did with the base R graphic function boxplot().

This section with a quick solution is here as it is difficult to find examples that
match the data style we have here i.e. many columns that need to be plotted. The
solution involves the stack() function that is part of the utils “utilities library”
for data frames.

This solution was found on this forum page: Building a box plot from all columns

https://www.guru99.com/r-apply-sapply-tapply.html
https://www.guru99.com/r-apply-sapply-tapply.html
https://stackoverflow.com/questions/27109347/building-a-box-plot-from-all-columns-of-data-frame-with-column-names-on-x-in-ggp

92 CHAPTER 6. IMPORTINGDATA

of data frame with column names on x in ggplot27.

To understand what it does we can simply look at its effect on the L object:

head(stack(L))

values ind
1 -0.5108256 LBXPFHS
2 0.3364722 LBXPFHS
3 1.5892352 LBXPFHS
4 0.1823216 LBXPFHS
5 -1.6094379 LBXPFHS
6 -0.6931472 LBXPFHS

Note: this could be written head(utils::stack(L)) in case of ambiguity with
other commands.

The effect is to create a simpler but longer format as long as the number of
columns multiplied by the number of rows. For L this would be 2170 * 4 = 8680.
The column names for this format is always values and ind (independent
variable) which are names to be reported in qplot():

library(ggplot2)
qplot(ind, values, data = stack(L), geom = "boxplot")

Warning: Removed 708 rows containing non-finite values (stat_boxplot).

We’ll see later how this work, but the ggplot version for all 10 odd-numbered
columns could be written as:

library(ggplot2)
ggplot(stack(log(PFAS_I[, seq(3,21, by = 2)])),

aes(x = ind, y = values)) +
geom_boxplot()

Warning: Removed 1770 rows containing non-finite values (stat_boxplot).
7https://stackoverflow.com/questions/27109347/building-a-box-plot-from-all-columns-of-

data-frame-with-column-names-on-x-in-ggp

https://stackoverflow.com/questions/27109347/building-a-box-plot-from-all-columns-of-data-frame-with-column-names-on-x-in-ggp
https://stackoverflow.com/questions/27109347/building-a-box-plot-from-all-columns-of-data-frame-with-column-names-on-x-in-ggp
https://stackoverflow.com/questions/27109347/building-a-box-plot-from-all-columns-of-data-frame-with-column-names-on-x-in-ggp
https://stackoverflow.com/questions/27109347/building-a-box-plot-from-all-columns-of-data-frame-with-column-names-on-x-in-ggp

6.4. MERGINGDATA FILES 93

−2

−1

0

1

2

3

LBXPFHS LBXPFNA LBXNFOA LBXMFOS
ind

va
lu

es

Figure 6.7: PFAS_I boxplot with log values for 4 columns.

6.4 Merging data files

NHANES data are split intomultiple files to provide flexibility andmodularity in
the choice of data. This makes the data easier to handle in small portions rather
than a huge, single data file. On the other hand it is often necessary to merge
one or more data file in order to obtain all of the data required for an analysis so
that all of the data for an individual scattered amongmultiple files be found on a
single row in the new, combined data file.

All that is required and necessary to merge data is at least a single column with
the same name. All NHANES data pertinent to individuals (excluding special
files with pooled data) start with the SEQN column that identify individuals with
a unique number.

PFAS may disrupt lipid regulation and gathering data that have both PFAS and

94 CHAPTER 6. IMPORTINGDATA

−2.5

0.0

2.5

5.0

LBXPFDELBXPFHSLBXMPAHLBXPFNALBXPFUALBXPFDOLBXNFOALBXBFOALBXNFOSLBXMFOS
ind

va
lu

es

Figure 6.8: PFAS_I boxplot with log values for 10 data columns.

cholesterol or triglyceride data would help in a study. As an example we’ll merge
the PFAS_Ifilewith another file containing cholesterol data. There are 3 files con-
taining cholesterol data for 2015-2016, separated by type.

Table 6.3: Cholesterol (Total, HDL, LDL & triglycerides) in
2015-2016 NHANES

Data File Name Doc File Data File
Date
Published

Cholesterol - High-Density
Lipoprotein (HDL)

HDL_I Doc HDL_I Data
[XPT - 189.2
KB]

September
2017

https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/HDL_I.htm
https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/HDL_I.XPT

6.4. MERGINGDATA FILES 95

Data File Name Doc File Data File
Date
Published

Cholesterol - Low - Density
Lipoprotein (LDL) &
Triglycerides

TRIGLY_I
Doc

TRIGLY_I
Data [XPT -
151.2 KB]

January 2019

Cholesterol - Total TCHOL_I
Doc

TCHOL_I
Data [XPT -
189.2 KB]

September
2017

The number of observation within each file is different with 8021 (765missing)
for both total cholesterol and HDL files, and only 3191 (468 missing) for LDL +
Triglyceride. The latter is probably due to NHANES method to use subsets of a
population as a cost saving method.

The PFAS_I data contains 2170 entries with 177missing. During themerging of
the data, only rows that have a corresponding SEQN entry will be saved.

For simplicity we’ll use the total cholesterol data. It contains only three columns
but none of them are “comment” columns:

• SEQN - Respondent sequence number
• LBXTC - Total Cholesterol (mg/dL)
• LBDTCSI - Total Cholesterol (mmol/L)

TheLBDTCSI variablewasderived fromLBXTC:Thetotal cholesterol inmg/dL (LBXTC)
was converted to mmol/L (LBDTCSI) bymultiplying by 0.02586.

Thefile has to be downloaded into a new user-defined R object as we did with the
PFAS data:

Download NHANES TCHOL_I 2015-2016 data to temporary file
download.file("https://wwwn.cdc.gov/nchs/nhanes/2015-2016/TCHOL_I.XPT",

tf <- tempfile(),
mode="wb")

https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/TRIGLY_I.htm
https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/TRIGLY_I.htm
https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/TRIGLY_I.XPT
https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/TRIGLY_I.XPT
https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/TCHOL_I.htm
https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/TCHOL_I.htm
https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/TCHOL_I.XPT
https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/TCHOL_I.XPT

96 CHAPTER 6. IMPORTINGDATA

Figure 6.9: Combining NHANES data into a single file is necessary for detailed
analysis.

Create Data Frame PFAS_I From Temporary File
TCHOL_I <- foreign::read.xport(tf)

class(TCHOL_I)

[1] "data.frame"

6.4.1 Merge() function

Themerge() functionhasmanyoptional parameters that permit variationsof the
merging. Details on all options for this function are available as help(merge) or
simply ?merge.

All we want for now is specify a common column, in our case SEQN and just keep
the entries that exist for both data files. Therefore the total number of entries
cannot be larger than that of PFAS_I, that is 2170.

6.4. MERGINGDATA FILES 97

The specification of the chosen columns is done with the by.x and by.y options.
In our case the chosen name will be the same. But if by chance the name was
different in the 2 files, specifying the name of the column in this way would still
work.

So, let’s combine the 2 files:

Merging PFAS and total cholesterol TCHOL data frames
M1 <- merge(PFAS_I, TCHOL_I, by.x = "SEQN", by.y = "SEQN")

class(M1)

[1] "data.frame"

dim(M1)

[1] 2170 24

Since TCHOL_I is the second argument (y in documention) its columns are added
at the end of PFAS_I. Inverting the argumentswould place the TCHOL_I columns
at the beginning. However, in all cases the SEQN column remains the first column.

We can check the name of just a few columns, for example with:

colnames(M1)[c(1,20:24)]

[1] "SEQN" "LBDNFOSL" "LBXMFOS" "LBDMFOSL" "LBXTC" "LBDTCSI"

The last 2 names are indeed the code names found in the documentation for
TCHOL_I.

We now have merged 2 data files using the unique number for each individual.
The process would be the same to add more data, for example adding the other
cholesterol data files for HDL and LDL+Triglycerides. But this can be done as an
exercise if it proves useful.

98 CHAPTER 6. IMPORTINGDATA

Figure 6.10: Wehave combinedNHANESdata for each individual from2 separate
files.

6.4.2 Merging demographics data

Most studies are set to compare and analyze data for different population. There-
fore adding the “demographics” data file would be useful.

Study: Merge your data with the demographics file if your study requires
it.

The procedure would be exactly the same using the merge() function
through the common SEQN column for individuals.

The code to download the demographics data was the example we saw ear-
lier in section 6.2.1.

If you are struggling with downloading data file or creating a master file
withmultiplemerges check code in AppendixD (usingNHANES codewith
foreign package) and D.4 (using haven package.)

Chapter 7

Creatinine adjustment

Many of the NHANES samples are derived from urine sample analysis. In order
to compensate for most variations between individuals it is often necessary to
proceed to an adjustment with the level of creatinine a metabolite that has a rate
of excretion rather constant and can serve an an indicator of urine dilution.

In this chapter:
• Creatinine adjustment rationale
• Download and explore creatinine data
• Converting weight/volume units
• Merging and reducing data
• Computing and saving creatinine adjustment

An older NHANES document had information about this process:

99

100 CHAPTER 7. CREATININEADJUSTMENT

The concentrations of environmental chemicals per whole weight of
serum are also on the laboratory file and can be used for comparison with
other published studies that have investigated these chemicals.
The current NHANES urine collection protocol provides ‘spot’ urine sam-
ples because these are collected at different times of the day (depending
on the examination session) and only one specimen is collected from each
survey participant. The laboratory measures of environmental chemicals
in urine are provided on the data files as concentrations per volume of
urine. Each data set for environmental chemicalsmeasured in urine, also
includes a variable for urinary creatinine concentration.
Urine dilution may vary markedly from person to person, time to time,
and because of other conditions, including fluid consumption, physi-
cal workload, and health. Creatinine is produced as a result of muscle
metabolic processes, and excreted from the body at a fairly constant rate
(though extreme dietsmay affect urine creatinine levels). The effect of uri-
nary dilution can be accounted for by determining the amount of the en-
vironmental chemical per amount of urinary creatinine in a given volume
of urine.
The equation for creatinine adjustment is:
Analyte concentration per gram of creatinine =
Concentration of environmental chemical in urine (wt/vol)
——
Concentration of creatinine in urine (wt/vol)

WARNINGCreatinine is related to lean bodymass and renal function
of individuals, and varies by age, gender, and race/ethnicity group.
It is recommended that one compare the creatinine-corrected environ-
mental chemical concentrations among individuals of similar demo-
graphic groups rather than the whole population because urinary creati-
nine levels differ according to age, gender, and race/ethnicity. Alterna-
tively, multiple regression analyses can be conducted using urinary cre-
atinine as an independent variable (in addition to variables for age, gen-
der, and race/ethnicity), so that the environmental chemical concentra-
tions comparisons can be based on adjustment for urinary dilution and
demographic differences.

7.1. CREATININEDATA 101

ThecurrentNHANESwebsiteno longerhas this information in this format.
It is available as a copy in a page titled “Using Blood Lipid or Urine Creati-
nine Adjustments in the Analysis of Environmental Chemical Data”1 as the
link within that page titled “Key Concepts about Blood Lipid or Using Urine Cre-
atinine Adjustments of Environmental Chemical Data”2

I have archived both pages at archive.org to preserve the availability of these pages.
Searching with the original links within the archival site will retrieve these original
files.

7.1 Creatinine data

The 2015-2016 document file is listed as ALB_CR_I.doc as it also contains infor-
mation for albumin.

Table 7.1: NHANES 2015-2016 albumin/creatinine data

Data File
Name Doc File Data File Date Published

Albumin
& Creati-
nine -
Urine

ALB_CR_I Doc ALB_CR_I Data [XPT -
539.8 KB]

Updated June 2019

The data file contains 8608 data points (328missing.)

The listed codes within ALB_CR_I.doc are:

http://medbox.iiab.me/modules/en-cdc/www.cdc.gov/nchs/tutorials/environmental/critical_issues/adjustments/
http://medbox.iiab.me/modules/en-cdc/www.cdc.gov/nchs/tutorials/environmental/critical_issues/adjustments/
https://archive.org/
https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/ALB_CR_I.htm
https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/ALB_CR_I.XPT

102 CHAPTER 7. CREATININEADJUSTMENT

Table 7.2: Codes for albumin and creatinine ALB_CR_I file

Code Description

SEQN Respondent sequence number
URXUMA Albumin, urine (ug/mL)
URDUMALC Albumin, urine comment code
URXUMS Albumin, urine (mg/L)
URXUCR Creatinine, urine (mg/dL)
URDUCRLC Creatinine, urine comment code
URXCRS Creatinine, urine (umol/L)
URDACT Albumin creatinine ratio (mg/g)

7.1.1 Downloading,merging PFAS and creatinine

As an example we’ll continue working on the PFAS_I urine metabolite and there-
fore we need to combine it with the creatinine data, again with the SEQN individ-
ual column. index{urine metabolite}

Download NHANES ALB_CR_I 2015-2016 data to temporary file
download.file("https://wwwn.cdc.gov/nchs/nhanes/2015-2016/ALB_CR_I.XPT",

tf <- tempfile(),
mode="wb")

Create Data Frame ALB_CR_I From Temporary File
ALB_CR_I <- foreign::read.xport(tf)

Once the ALB_CR_I data frame is created we can merge it with the PFAS_I data
frame.

Merging PFAS and total cholesterol TCHOL data frames
M2 <- merge(PFAS_I, ALB_CR_I, by.x = "SEQN", by.y = "SEQN")

dim(M2)

7.2. ANALYTEMEASUREMENTUNITS 103

[1] 2170 29

7.2 Analytemeasurement units

The ratio of analyte to creatinine has to be performed using the same unit of
weight by volume as detailed in the formula we have seen. Therefore we must
look at the unit values provided in the HTML .DOC pages and find:

• LBXMFOS - Sm-PFOS (𝑛𝑔/𝑚𝐿)
• URXUCR - Creatinine, urine (𝑚𝑔/𝑑𝐿)

The two weight/volume are not one the same scale so we need to convert from
one to the other or to a common version. Creatinine is abundant and expressed
in milligrams per deciliter (𝑚𝑔/𝑑𝐿). PFAS is on a smaller scale in nanogram per
milliliter.

• 1𝑛𝑔 = 10−9𝑔𝑟𝑎𝑚
• 1𝑚𝑔 = 10−3𝑔𝑟𝑎𝑚
• 1𝑚𝑙 = 10−3𝑙𝑖𝑡𝑒𝑟
• 1𝑑𝐿 = 10−1𝑙𝑖𝑡𝑒𝑟

Hence 1𝑛𝑔/𝑚𝑙 = 10−9𝑔/10−3𝑙
and 1𝑚𝑔/𝑑𝐿 = 10−3𝑔/10−1𝑙

To avoid having too small values in decimals, the best option may be to convert
the creatinine values to the same unit as the PFAS knowing that 1𝑚𝑔/𝑑𝐿 =
10000𝑛𝑔/𝑚𝑙 as can be deducted from the ratio of the units. Therefore in a con-
version in this contextwould need to add a factor of104 for the creatinine current
values:

𝐴𝑛𝑎𝑙𝑦𝑡𝑒
𝐶𝑟𝑒𝑎𝑡𝑖𝑛𝑖𝑛𝑒 ∗ 104 = 𝐴𝑛𝑎𝑙𝑦𝑡𝑒

𝐶𝑟𝑒𝑎𝑡𝑖𝑛𝑖𝑛𝑒 ∗ 10−4

104 CHAPTER 7. CREATININEADJUSTMENT

7.3 Reduced set

Thenew M2merged data contains 29 columns, but we only need to keep a smaller
number of them for this demonstration: SEQN as well as the column for the sum
of PFAS (LBXMFOS) and those of creatinine. But nowwe know that we need to use
the creatinine column data URXUCRwith𝑚𝑔/𝑑𝐿.
We can create a subset data frame by choosing these columns as we have seen
before (section 5.3.)

new subset containing SEQN, PFAS sum and creatinine columns
PFAS_CRE <- M2[,c(1,21,26)]
class(PFAS_CRE)

[1] "data.frame"

dim(PFAS_CRE)

[1] 2170 3

7.4 Computing Analyte / Creatinine ratio

We now need to do 2 things:

1. compute the ratio value from the established formula
2. add this as a new column to PFAS_CRE

The computation will take values from column 2 (LBXMFOS) and divide it by the
values of column 3 (URXUCR) and multiply that with 10−4. This could be written
as:

𝑟𝑎𝑡𝑖𝑜 = 𝐿𝐵𝑋𝑀𝐹𝑂𝑆
𝑈𝑅𝑋𝑈𝐶𝑅 ∗ 10−4

We’ll write the resulting number, for each row, in a column called RATIO (as an
example) adding a column to the existing user-defined R object that we could call
PFAS_CRE. All we need to do is assign the name of the new column using the sub-

7.4. COMPUTINGANALYTE / CREATININERATIO 105

setting method using a $ sign: PFAS_CRE_R$RATIO. The column will be created
on that demand and populated with the values that are computed.

add new column RATIO with computer values
PFAS_CRE$RATIO <- with(PFAS_CRE, (LBXMFOS / URXUCR) * 10^-4)
check results
head(PFAS_CRE)

SEQN LBXMFOS URXUCR RATIO
1 83736 0.6 315 1.904762e-07
2 83745 0.8 178 4.494382e-07
3 83750 1.9 81 2.345679e-06
4 83754 5.4 148 3.648649e-06
5 83762 0.4 317 1.261830e-07
6 83767 1.0 65 1.538462e-06

We can check the distribution of values with boxplot and histogram. This time
we can use log base 10 with function log10() as it may better reflect the negative
powers of 10 in the data. (Note: the code below is indented for easier reading.)

par(mfrow=c(1,2))
boxplot(log10(PFAS_CRE$RATIO),

main = "PFAS/Creat. log10 ratio")

hist(log10(PFAS_CRE$RATIO),
freq=FALSE,
breaks = 50,
main = "Density Histogram ",
xlab = "log10 of PFAS/creatinine ratio")

par(mfrow=c(1,1))

106 CHAPTER 7. CREATININEADJUSTMENT

−
8

−
7

−
6

−
5

−
4

PFAS/Creat. log10 ratio Density Histogram

log10 of PFAS/creatinine ratio

D
en

si
ty

−8 −7 −6 −5 −4
0.

0
0.

2
0.

4
0.

6
0.

8

Figure 7.1: Boxplot andhistogramof log10 transformation of PFAS sumdata after
creatinine adjustment.

7.5 Exposure - Outcome

Background3: “The key to understanding the environmental fate and transport of PFAS
compounds is their surface-active behavior. The fluorinated backbone is both hydrophobic
(water repelling) andoleophobic/lipophobic (oil/fat repelling)while the terminal functional
group is hydrophilic (water loving). This means that PFAS compounds tend to partition to
interfaces, such as between air and water with the fluorinated backbone residing in air and
the terminal functional group residing in water. The PFAS partitioning behavior also is
affected by the alkyl chain length and the charge on the terminal functional group. In gen-
eral, PFASs with shorter alkyl chain length are more water soluble than those with longer
lengths.”

3https://clu-in.org/contaminantfocus/default.focus/sec/Per-_and_Polyfluoroalkyl_
Substances_(PFASs)/cat/Chemistry_and_Behavior/

https://clu-in.org/contaminantfocus/default.focus/sec/Per-_and_Polyfluoroalkyl_Substances_(PFASs)/cat/Chemistry_and_Behavior/
https://clu-in.org/contaminantfocus/default.focus/sec/Per-_and_Polyfluoroalkyl_Substances_(PFASs)/cat/Chemistry_and_Behavior/

7.5. EXPOSURE - OUTCOME 107

Onequestion thatmay arise iswhether PFAS compounds could accumulate in the
fat tissue in the body. We can explore this option thanks to the “Body Measures
(BMX_I)” NHANES data, at least on a broad sense. But we first need to download
the file:

#BMX_I - 1.9 MB
download.file("https://wwwn.cdc.gov/nchs/nhanes/2015-2016/BMX_I.XPT",

tf <- tempfile(),
mode="wb")

BMX_I <- foreign::read.xport(tf)
Dimensions
dim(BMX_I)

[1] 9544 26

For this test we’ll only keep the BMXBMI column “*Body Mass Index (kg/m**2)*”
which is the 11^th column. We also need to keep the common SEQN column. We
canmerge these 2 columnswith the dataset containing the creatinine adjustment
of the PFAS sum data we just made earlier:

PFAS_CRE_BMI <- merge(PFAS_CRE, BMX_I[, c(1,11)], by.x = "SEQN", by.y = "SEQN")

We can take a quick look at the BMI distribution with original and log10 values in
a histogram form:

par(mfrow=c(1,2))
with(PFAS_CRE_BMI,hist(BMXBMI, breaks = 30))
with(PFAS_CRE_BMI,hist(log10(BMXBMI), breaks = 30)) ; par(mfrow=c(1,1))

We can note that, as would be expected,the logged values have a more “bell-
shaped”distribution.

We can now create a simple plot showing PFAS values as a function of BMI. We
can plot both the original values as well as the log values.

par(mfrow=c(1,2))
with(PFAS_CRE_BMI, plot(BMXBMI ~ LBXMFOS))

108 CHAPTER 7. CREATININEADJUSTMENT

Histogram of BMXBMI

BMXBMI

F
re

qu
en

cy

10 20 30 40 50 60

0
50

10
0

15
0

20
0

25
0

Histogram of log10(BMXBMI)

log10(BMXBMI)

F
re

qu
en

cy

1.1 1.3 1.5 1.7
0

50
10

0
15

0

Figure 7.2: Histogram of BMI values and log10 values.

with(PFAS_CRE_BMI, plot(log10(BMXBMI) ~ log10(LBXMFOS))); par(mfrow=c(1,1))

Wecan add a simple linear regression line for both plot aswe have seen previously
(section 5.7.)

lm1 <- with(PFAS_CRE_BMI, lm(BMXBMI ~ LBXMFOS))
lm2 <- with(PFAS_CRE_BMI, lm(log10(BMXBMI) ~ log10(LBXMFOS)))
print out values
lm1; lm2

Call:
lm(formula = BMXBMI ~ LBXMFOS)

Coefficients:

7.5. EXPOSURE - OUTCOME 109

0 5 10 15

20
30

40
50

60

LBXMFOS

B
M

X
B

M
I

−1.0 0.0 0.5 1.0

1.
2

1.
4

1.
6

1.
8

log10(LBXMFOS)

lo
g1

0(
B

M
X

B
M

I)

Figure 7.3: Histogram of BMI values and log10 values.

(Intercept) LBXMFOS
28.5857 0.1376

Call:
lm(formula = log10(BMXBMI) ~ log10(LBXMFOS))

Coefficients:
(Intercept) log10(LBXMFOS)

1.4458 0.0154

abline(lm1, col="blue", lwd=3)
abline(lm2, col="blue", lwd=3)

The slope in faint in both cases and indeed the slope values found in the

110 CHAPTER 7. CREATININEADJUSTMENT

0 5 10 15

20
30

40
50

60

LBXMFOS

B
M

X
B

M
I

−1.0 0.0 0.5 1.0
1.

2
1.

4
1.

6
1.

8

log10(LBXMFOS)

lo
g1

0(
B

M
X

B
M

I)

Figure 7.4: Histogram of BMI values and log10 values with added linear regres-
sion.

coefficients records (section 5.7) are low at about 0.138 for the normal values
and 0.015 for the log values.

We can confirm that the correlation is faint by calculating the Pearson correlation
factor which is the default method for the cor() function. The help tells us that
we need to add use="complete.obs" to the command to avoid an NA result or
errors due to missing values.

with(PFAS_CRE_BMI, cor(BMXBMI ,LBXMFOS, use="complete.obs"))

[1] 0.03611288

with(PFAS_CRE_BMI, cor(log10(BMXBMI) ,log10(LBXMFOS), use="complete.obs"))

7.5. EXPOSURE - OUTCOME 111

[1] 0.05981631

The values are indeed very small in accord with the very flat linear regression.

7.5.1 Illusions

It can be noted that if the plot is stretched horizontally, the linewill look even flat-
ter. The can be seen if we change the plotting position with par(mfrow=c(2,1))
instead of par(mfrow=c(1,2)).

0 5 10 15

20

LBXMFOS

B
M

X
B

M
I

−1.0 −0.5 0.0 0.5 1.0

1.
2

log10(LBXMFOS)

lo
g1

0(
B

M
X

B
M

I)

Figure 7.5: Streching horizontally makes the linear regression appear more hori-
zontal

7.5.2 qplot version

The qplot() version can be created by getting inspired to what was done in sec-
tion 5.8.2.

112 CHAPTER 7. CREATININEADJUSTMENT

`geom_smooth()` using formula 'y ~ x'

1.3

1.5

1.7

−1.0 −0.5 0.0 0.5 1.0
log10(LBXMFOS)

lo
g1

0(
B

M
X

B
M

I)

Figure 7.6: Histogram of BMI log10 values, linear regression (blue) and standard
error (gray.)

7.6 Creating amaster data file

See Appendix D for a complete set of code to download, merge and save the
master file.

We have learned how to combine two NHANES data files, but it is could useful
to be able to merge more data into a large repository or “master” file from which
smaller datasets can be created.

The merge() function can automatically recognize identical columns which will
make the merging easier as it will not be necessary to use the by.x commands.

7.6. CREATINGAMASTERDATA FILE 113

In fact, doing so will prevent the merge() function to recognize columns that are
identical and this will result in duplicate columns. However, to make the file a
“master* we would need to keep all rows, and this is accomplished by adding the
all.x option (see ?merge.) Below we’ll download and merge more datasets, in-
cluding some that we already have downloaded. This should just be a review.

We’ll add the file BMX_I for body/mass index and other body measurements as
well as the demographic file DEMO_I and the PFAS_I,

DEMO_I - 3.6 MB
download.file("https://wwwn.cdc.gov/nchs/nhanes/2015-2016/DEMO_I.XPT",

tf <- tempfile(),
mode="wb")

DEMO_I <- foreign::read.xport(tf)
Dimensions
dim(DEMO_I)

[1] 9971 47

We previously downloaded (or learned how to download) the albumin/creatinine
file (ALB_CR_I) and that of total cholesterol TCHOL_I.

Let’smerge all 4 keeping all rows startingwith DEMO_I so that it is on the left hand
side.

Master1 <- merge(DEMO_I, BMX_I, all.x=TRUE)
Master2 <- merge(Master1, PFAS_I, all.x=TRUE)
Master3 <- merge(Master2, TCHOL_I, all.x=TRUE)
Master4 <- merge(Master3, ALB_CR_I, all.x=TRUE)
dimensions
dim(Master1) ; dim(Master2); dim(Master3); dim(Master4)

[1] 9971 72

[1] 9971 93

114 CHAPTER 7. CREATININEADJUSTMENT

[1] 9971 95

[1] 9971 102

The process would be the same to addmore data file.

To save the master file into a comma separated file (.csv) use the write_csv()
functionof dyplrwhich is “about twice as fast aswrite.csv(), andneverwrites
rownames.” (See chapter 8 section 8.3 and chapter ??10 aswe have not yet studied
that package at this point.)

For example to save the data frame Master4 in the current directory:

write_csv(Master4, "Master4.csv")

Using base Rwe would write similarly:

write.csv(Master4, "Master4.csv")

This would allow to read the data again without having to go through the process
of creating the combined dataset.

Chapter 8

Tidyverse: another RUniverse

Tidyverse exists and it is a dialect of R saidHadleyWickham1 at the RStudio::Conf
20172 about this single package that is an umbrella name for a coherent system of
[multiple] packages for datamanipulation, exploration and visualization that share a com-
mon design philosophy.3

In this chapter:
• Tidyverse goal
• Tidyverse packages
• Magrittr: pipes
• dplyr: pipeline demonstration

HadleyWickham’s notes from the 2017 conference4 about Tidyverse:

1. It exists

1Hadley Wickham is the Chief Scientist at RStudio, a member of the R Foundation, and Ad-
junct Professor at Stanford University and the University of Auckland. He builds tools (both com-
putational and cognitive) tomake data science easier, faster, andmore fun. He develops packages
for data science.

2https://rstudio.com/resources/rstudioconf-2017/
3https://rviews.rstudio.com/2017/06/08/what-is-the-tidyverse/

115

https://rstudio.com/resources/rstudioconf-2017/
https://rstudio.com/resources/rstudioconf-2017/
https://rstudio.com/resources/rstudioconf-2017/
https://rviews.rstudio.com/2017/06/08/what-is-the-tidyverse/

116 CHAPTER 8. TIDYVERSE: ANOTHERRUNIVERSE

2. It has a web site
3. It has a package
4. It has a book

Perhaps more importantly:

Goal: Solve complexproblemsby combining simple,
uniform pieces.
The fundamental philosophy in Tidyverse is to separate commands and
queries

A commands function performs an action
A query function computes a value

Examples:

Command: print(), plot(), write.csv(), <-
Query: summary(), sqrt()

Tidyverse is a package that installs a series of other packages. The fact that “it has
a package” means that all packages composing Tidyverse can be installed with the
single command:

install.packages("tidyverse")

instead of:

install.packages(c(
"broom", "dplyr", "feather", "forcats","ggplot2", "haven",
"httr", "hms", "jsonlite", "lubridate", "magrittr",
"modelr", "purrr", "readr", "readxl", "stringr", "tibble",
"rvest", "tidyr", "xml2"

))

Study: Watch the first 30 minutes of Hadley Wickham’s keynote presenta-

8.1. MAGRITTR - PIPE ANDPIPELINES 117

tion at RStudio::Conf 2017 - February 10, 2017

Data Science in the Tidyverse5

In the next sections we’ll explore the packages that may be useful for analysis of
tabular data such as NHANES data.

8.1 Magrittr - pipe and pipelines

In English a “pipe” can designate an object to smoke tobacco or house plumbing.
In both cases it can be viewed as a hollow cylinder.

In computing a “pipe” is a method to create a data stream in the memory of the
computer without the need to create intermediary files or R objects. In Unix the
pipe is represented by a vertical bar: | but in R the pipe is represented by:

% > %
In English, when reading code, it is useful to replace the pipe with and then to
better understand the successive passage of each step or function.

Once startedwith data froman object the resulting streamof data canbemodified
by a function and then passed on to the next function, and then the next etc. The
flow of data can be conceptualized as a flow of water going through pipes until it
exits (figure 8.1.)

The stream of data can bemodified by successive function, each passing the data
stream along the “pipe” to the next function until the final result (8.1.)

The pipe operator is the conduit for the data stream.

There can be more than one operation until the final result.

https://rstudio.com/resources/rstudioconf-2017/data-science-in-the-tidyverse-hadley-wickham/

118 CHAPTER 8. TIDYVERSE: ANOTHERRUNIVERSE

Figure 8.1: Imagining the data strem as a flow of water in pipes.

The command-query distinction is useful for pipes

The body is made up of queries
Every pipe is ended by a command

The use of pipe can help create pipelines tomanipulate, convert, gather, select data
in a way that ends in a final result without the need of intermediate items, as all
happens while “in transit” within the conduits.

The pipe is widely used in the context of Tidyverse but it is not restricted to that
Universe and can find its uses in writing R commands.

Study: Watch the 25 min RStudio::Conf 2017 by Bob Rudis:

Writing Readable Code with Pipes6

The name of the package is derived as a reference to the famous surrealist
painter RenéMagritte 1929 image “this is not a pipe” as an image is not the
object itself. This image is now at the Los Angeles County Museum of Art.

https://rstudio.com/resources/rstudioconf-2017/writing-readable-code-with-pipes/
https://en.wikipedia.org/wiki/Ren%C3%A9_Magritte
https://en.wikipedia.org/wiki/The_Treachery_of_Images

8.2. TIBBLE 119

8.2 Tibble

A “tibble” is a data frame, but a modern reimagining of the data.frame class.
{tibble!data frame}

From the Tidyverse Tibble web pagea: Tibbles are data.frames that
are lazy and surly: they do less (i.e. they don’t change variable names or types, and
don’t do partialmatching) and complainmore (e.g.when a variable does not exist).
This forces you to confront problems earlier, typically leading to cleaner, more ex-
pressive code. Tibbles also have an enhanced print()methodwhichmakes them
easier to use with large datasets containing complex objects.

ahttps://tibble.tidyverse.org/

As far as we are concerned we do not have to worry about that as Tidyverse pack-
ages work fine with data frames. We’ll just see the word “tibble” appear when
working with the Tidyverse functions and that’s simply what it is.

One difference in the print out of a table of data from a data frame in a tibble form
is that we’ll see the data type printed under the column name such as <chr> for
character column, <int> for integers and <dbl> for “double-precision decimal
number.”

Trivia
TheTibble logo font character for lettersTandEare very close in shape (but
not the B) but could the tibble name also be related to the famous sweet
“tribble” creature on the original Star Trek. Or is it a New Zealander way
of pronouncing “table”? Who know? (perhaps HW does?)

https://tibble.tidyverse.org/

120 CHAPTER 8. TIDYVERSE: ANOTHERRUNIVERSE

Figure 8.2: Is the Tibble logo a hint on Star Trek?

8.3 dplyr - overview

Fromdplyr.tidyverse.org/:

dplyr is a grammar of datamanipulation, providing a consistent set of verbs that
help you solve the most common datamanipulation challenges.

select() picks variables based on their names. (columns)
filter() picks cases based on their values. (rows)
arrange() changes the ordering of the rows.
mutate() adds new variables that are functions of existing variables.
summarise() reduces multiple values down to a single summary.

These all combine naturally with group_by()which allows you to perform
any operation “by group”.

8.3.1 Demo 1: all together pipeline

Before we go into details of the various verbs that make dplyr poweful, let’s first
create a pipeline as an example of the power of the Tidyverse methods: with one
series of commands and queries we’ll recreate one of the plots of figure 7.2 “just
like that!” with no need of any intermediate steps or temporary objects.

We’ll start with ourmaster file Master4 “injected” into the pipeline and thenwe’ll:

• select specific columns (automatic subset)
• filter out rows that have NA

https://dplyr.tidyverse.org/

8.3. DPLYR - OVERVIEW 121

• compute the RATIO for creatinine ajustment (mutate)
• plot the data with qplot() and include automatic linear regression.

Now here’s the code - discussed further below:

First, we need to make sure that tidyverse is loaded:

library(tidyverse)

Thenwe run the pipeline:

pipeline demo 1
Master4 %>%
select(SEQN, LBXMFOS, URXUCR, BMXBMI) %>%
filter(!is.na(LBXMFOS)) %>%
head() %>%
mutate (RATIO = (LBXMFOS/URXUCR)*10^-4) %>%
qplot(log10(RATIO), BMXBMI, data = ., geom = c("point", "smooth"))

`geom_smooth()` using method = 'gam' and formula 'y ~ s(x, bs = "cs")'

Here are a few more details about the code, and let’s see if we follow the The
command-query distinction useful for pipes

• The body is made up of queries

• Every pipe is ended by a command

But what about the beginning?

The beginning of the pipe needs to start the “injection” of data. In the example we
started with Master4which is a very large dataset:

Master4 %>%: the implied function here is print() which is a command per-
forming an action.

However, we could also have started with:

select(Master4, SEQN, LBXMFOS, URXUCR, BMXBMI) %>%: in this case
the Master4 data is within the query function select().

122 CHAPTER 8. TIDYVERSE: ANOTHERRUNIVERSE

20

30

40

50

60

−8 −7 −6 −5 −4
log10(RATIO)

B
M

X
B

M
I

Figure 8.3: A pipeline to recreate scatter plot of BMI values as s function of log10
RATIO creatinine adjustment for the sum of PFAS data column LBXMFOS.

Figure 8.4: Data is first injected in the pipeline (Hydroelectric power station,
Huanza, Peru.)

8.3. DPLYR - OVERVIEW 123

But in both cases we have data starting to stream down the pipeline.

filter(!is.na(LBXMFOS)) %>% uses a logical operator (Appendix B.4) to re-
move the rows that have NA within the LBXMFOS column. ! is negating the next
statement is.na that checks if there is an NA value. This can be read in English as
“is not NA”. This is a query.

head() %>% is commented out and can be used for testing and just show the
first 6 lines of data passing through. It does not hamper the pipeline to have a line
commented out. Actual comments of explanation could therefore be included
along the pipeline. head() is a command that would end the pipeline for testing.

mutate (RATIO = (LBXMFOS/URXUCR)*10^-4) %>% computes the creatinine
adjustment as was detailed in section 7.4 using the same formula. A new column
named RATIOwill be created to store the computation, just as it was done in base
R. This is a query.

qplot(log10(RATIO), BMXBMI, data = ., geom = c("point",
"smooth")) will make the plot, with default regression curve (to compute
a linear model line see section 7.5.2. The geom potion could be removed to just
get the points.)

The option data = . may appear “strange” and we have not seen this yet. Since
we are in a pipeline, the data is symbolically represented by the dot . which is
useful, otherwise how would we specify where the data came from?

Did we follow the pipe rules? Overall yes!

qplot is first a command that will perform the action of creating a plot. How-
ever, this function aswell as its bigger versionqqplot2()were created before the
Tidyverse, and does not adhere completely to those rules as internally there will
be some computation (hence query) to create the regression line or curve. How-
ever, one could argue that since the plotting of the line could be the final step, that
would be the result of a command.

124 CHAPTER 8. TIDYVERSE: ANOTHERRUNIVERSE

Chapter 9

Intermission: datawrangling

NHANES datasets are “curated” and are created following standard practice re-
sulting in datasets listed in tabular data formatted in a way well suited for R.

This section is here as an “intermission” in the form of a lecture by Garrett
Grolemund, Data Scientist andMaster Instrutor at RStudio, split into 4 YouTube
videos. Thewhole four parts are listed here, but the most important for treating
NHANES data would be Part 3 about the dplyr Tidyverse package. Part 1 would
reviewwhat was learned in the previous chapter (8) and Part 2 is about the tidyr
package that helps reformat the data, a very useful tool but not really necessary
for NHANES data.

Description of the RStudio videos:

Data wrangling is too often the most time-consuming part of data science and ap-
plied statistics. Two tidyverse packages, tidyr and dplyr, help make data manipula-
tion tasks easier. These videos introduce you to these tools. Keep your R code clean
and clear and reduce the cognitive load required for common but often complex data
science tasks.

125

126 CHAPTER 9. INTERMISSION: DATAWRANGLING

Table 9.1: Lectures on data wrangling: Tidyverse tidyr and
dplyr packages.

Title Link Time

Part 1: What is data
wrangling? Intro,
Motivation, Outline,
Setup

https://youtu.be/jOd65mR1zfw 8:26

Part 2: Tidy Data and
tidyr

https://youtu.be/1ELALQlO-yM 17:36

Part 3: Data
manipulation tools:
dplyr

https://youtu.be/Zc_ufg4uW4U 19:34

Part 4: Working with
Two Datasets: Binds,
Set Operations, and
Joins

https://youtu.be/AuBgYDCg1Cg 7:23

9.1 Part 3 here

HTML version has Part 3 embedded here:

Pt. 3: Data manipulation tools: dplyr https://youtu.be/Zc_ufg4uW4U

00.40 setup
02:00 - dplyr::select
03:40 - dplyr::filter
05:05 - dplyr::mutate
07:05 - dplyr::summarise
08:30 - dplyr::arrange
09:55 - Combining these tools with the pipe (Setup for the Grammar of Data Ma-
nipulation)
11:45 - dplyr::group_by

https://youtu.be/jOd65mR1zfw
https://youtu.be/1ELALQlO-yM
https://youtu.be/Zc_ufg4uW4U
https://youtu.be/AuBgYDCg1Cg
https://youtu.be/Zc_ufg4uW4U
https://www.youtube.com/watch?v=Zc_ufg4uW4U&t=120s
https://www.youtube.com/watch?v=Zc_ufg4uW4U&t=220s
https://www.youtube.com/watch?v=Zc_ufg4uW4U&t=305s
https://www.youtube.com/watch?v=Zc_ufg4uW4U&t=425s
https://www.youtube.com/watch?v=Zc_ufg4uW4U&t=510s
https://www.youtube.com/watch?v=Zc_ufg4uW4U&t=595s
https://www.youtube.com/watch?v=Zc_ufg4uW4U&t=705s

Chapter 10

dplyr - datamanipulation

While base R has many tools that can do the job, dplyr and other Tidyverse pack-
ages can easily work together and allow the easy creation of pipelines to accom-
plish a task as was demonstration in the previous chapter 8.3.1.

In this chapter we’ll explore a few dplyr verbs
• select to choose columns
• filter to check data on rows
• arrange to order data

• mutate to compute new values
• summarise to create condensed data
• group_by to select specific data

In additionwe’ll learn about some conditional selectionwithin the functions
described by these verbs.

127

128 CHAPTER 10. DPLYR - DATAMANIPULATION

We’ll use the Master4 large data file that was created previously.
(See all download and merge code in Appendix D if you need to recreated
it.) Master4 is amerge, in order of the following datasets (links are to the
documentation):
DEMO_I, BMI_I, PFAS_I, TCHOL_I, ALB_CR_I

10.1 selecting columns

To limit the output length most examples will be piped in the head() func-
tion to only print the columnheaders followed by 6 data lines. %>% head()
may terminate the command but the pipeline can be extended further.

The selection of columns is easy and just requires the name of the data frame con-
taining the data and specifying the column names that we want to keep for fur-
ther use in an analysis. The total length (number of rows) would be printed, here
limited by piping into head().

select(Master4, SEQN, LBXMFOS, URXUCR, BMXBMI) %>% head()

SEQN LBXMFOS URXUCR BMXBMI
1 83732 NA 41 27.8
2 83733 NA 181 30.8
3 83734 NA 70 28.8
4 83735 NA 102 42.4
5 83736 0.6 315 20.3
6 83737 NA 64 28.6

We can note that in column LBXMFOS there are 5 NA, in the next section we’ll see
how to get rid of them.

https://wwwn.cdc.gov/nchs/nhanes/2015-2016/DEMO_I.htm
https://wwwn.cdc.gov/nchs/nhanes/2015-2016/BMX_I.htm
https://wwwn.cdc.gov/nchs/nhanes/2015-2016/PFAS_I.htm
https://wwwn.cdc.gov/nchs/nhanes/2015-2016/TCHOL_I.htm
https://wwwn.cdc.gov/nchs/nhanes/2015-2016/ALB_CR_I.htm

10.2. FILTERINGROWS 129

Note that the square bracket subsetting alsoworks, for example to select the first 7
columns we could write select(Master4, 1:7) which would be equivallent to
Master4[, 1:7] in this case.

10.2 Filtering rows

The filtering of rows depends on the desired outcome. One step that is useful
and often necessary is to remove the NA values. If we continue with the selected
columns we can remove those with:

select(Master4, SEQN, LBXMFOS, URXUCR, BMXBMI) %>% head() %>%
filter(!is.na(LBXMFOS))

SEQN LBXMFOS URXUCR BMXBMI
1 83736 0.6 315 20.3

Since the head() function was first, we are only filtering the first 6 rows, and 5
are therefore eliminated. If we move the head() function after, we’ll select the
first 6 rows that do not have any NA.

select(Master4, SEQN, LBXMFOS, URXUCR, BMXBMI) %>%
filter(!is.na(LBXMFOS)) %>%
head()

SEQN LBXMFOS URXUCR BMXBMI
1 83736 0.6 315 20.3
2 83745 0.8 178 25.0
3 83750 1.9 81 24.1
4 83754 5.4 148 43.7
5 83762 0.4 317 38.0
6 83767 1.0 65 26.3

Wecanuse other operator (Appendix B) to filter the rowswith conditional statements.
For example we could ask to keep the BMI values below or equal to 25.0 andmore,
and at the same time removing NA values from chosen columns:

130 CHAPTER 10. DPLYR - DATAMANIPULATION

select(Master4, SEQN, LBXMFOS, URXUCR, BMXBMI) %>%
filter(BMXBMI <= 25.0) %>%
head()

SEQN LBXMFOS URXUCR BMXBMI
1 83736 0.6 315 20.3
2 83738 NA 100 18.1
3 83739 NA 25 15.7
4 83745 0.8 178 25.0
5 83746 NA 34 16.1
6 83748 NA 14 16.1

We could have the filter() functionmore than oncewithin the pipeline, but we
can also have multiple statements at the same time:

select(Master4, SEQN, LBXMFOS, URXUCR, BMXBMI) %>%
filter(!is.na(BMXBMI),

BMXBMI <= 25.0,
!is.na(LBXMFOS),
URXUCR == 25.0) %>%

head()

SEQN LBXMFOS URXUCR BMXBMI
1 85253 2.8 25 24.2
2 86086 1.1 25 20.3
3 88829 0.5 25 20.1
4 89326 0.7 25 22.9
5 89399 1.1 25 24.0
6 90178 0.6 25 20.4

Note on style: writing each conditional statement on a separate line makes it easier
to read and understand the code.

The dyplr function drop_na() would also remove NA from all rows, or

10.3. ARRANGEDATA 131

specified rows.

10.3 Arrange data

For dplyr to arrange data is to sort data in order. The following example accom-
plishesmany things at the same time and the “seed”makes the results always the
same. To see just 6 lines of ordered data based on age, the data is first randomly
sampled to keep only 100 rows with a dyplr function sample_n(). All rows in the
age columnRIDAGEYRwithout value are removedwithdrop_na(). Four columns
are selected, and the age is filtered to keep only ages above 12. The data is then
arranged (ordered) by the first (age) and then second column (creatinine) as desig-
nated. The data is first ordered by age and then by the second parameter.

set.seed(18) ;
Master4 %>%
sample_n(100) %>%
drop_na(RIDAGEYR) %>%
select(SEQN, URXUCR, BMXBMI, RIDAGEYR) %>%
filter(RIDAGEYR >= 12) %>%
arrange(RIDAGEYR, URXUCR) %>%
head()

SEQN URXUCR BMXBMI RIDAGEYR
1 89664 114 16.1 12
2 91777 148 20.3 13
3 90183 330 26.2 13
4 92077 116 17.8 14
5 84253 144 20.6 14
6 92721 161 25.2 14

Note that the order in the pipe may be important, but the modularity of the code
makes it easy to try if there is an effect. For example, since we are only looking at

132 CHAPTER 10. DPLYR - DATAMANIPULATION

6 values here, it makes no difference if the sampling of 100 rows occurs before or
after the dropping of NA in the age column.

10.4 mutating data

As we explored in the previous demonstration (8.3.1) we can create a new column
when computing data with the mutate() function. As an example we can com-
pute a ratio of ℎ𝑒𝑖𝑔ℎ𝑡

𝑤𝑒𝑖𝑔ℎ𝑡 as it is often a useful measure. In the BMX_I data we can
find the relevant column names:

• BMXWT - Weight (kg)
• BMXHT - Standing Height (cm)
• BMXBMI - BodyMass Index (kg/m**2)

We can then make a selection of columns and compute the ratio which will be
saved in a new columnwith the name that we define for example HWRATIO. As an
example the data is then rounded to just 1 decimal point asmost of the rest of the
data:

Master4 %>%
select(SEQN, BMXWT, BMXHT, BMXBMI) %>%
mutate(HWRATIO = BMXHT / BMXWT,

HWRATIO2 = round(HWRATIO, digit=1)) %>%
head()

SEQN BMXWT BMXHT BMXBMI HWRATIO HWRATIO2
1 83732 94.8 184.5 27.8 1.946203 1.9
2 83733 90.4 171.4 30.8 1.896018 1.9
3 83734 83.4 170.1 28.8 2.039568 2.0
4 83735 109.8 160.9 42.4 1.465392 1.5
5 83736 55.2 164.9 20.3 2.987319 3.0
6 83737 64.4 150.0 28.6 2.329193 2.3

10.4. MUTATINGDATA 133

10.4.1 mutatewith conditional statement

When analyzing tabular data we may have the choice will be made for each row.
Here is an example found online: Creating New Variables in R with mutate() and
ifelse()1.

Create 3 vectors
section <- c("MATH111", "MATH111", "ENG111")
grade <- c(78, 93, 56)
student <- c("David", "Kristina", "Mycroft")
Combine vectors into a dataframe
gradebook <- data.frame(section, grade, student)
Test of grade level and assign an outcome
mutate(gradebook, Pass.Fail = ifelse(grade > 60, "Pass", "Fail"))

section grade student Pass.Fail
1 MATH111 78 David Pass
2 MATH111 93 Kristina Pass
3 ENG111 56 Mycroft Fail

Results are printed out

By “nesting” multiple ifelse() statements we can manage to provide multiple
choices: the second argument is replaced by anotherifelse() statements in suc-
cession. Thefinal iterationhas a single option that is not anifelse() statements.
In the example below, from the same source, the gradebook is read one row at a
time, and then we need to provide a grade based on the letter system: A through
D or F.

mutate(gradebook,
letter =

ifelse(grade %in% 60:69, "D",
ifelse(grade %in% 70:79, "C",

ifelse(grade %in% 80:89, "B",

1https://rpubs.com/daranzolin/mutateifelse

https://rpubs.com/daranzolin/mutateifelse
https://rpubs.com/daranzolin/mutateifelse
https://rpubs.com/daranzolin/mutateifelse

134 CHAPTER 10. DPLYR - DATAMANIPULATION

ifelse(grade %in% 90:99, "A",
"F")))))

section grade student letter
1 MATH111 78 David C
2 MATH111 93 Kristina A
3 ENG111 56 Mycroft F

This makes use of the %in% operator that can easily be understood as being able
to test if a value is within the proposed range. On the first line we ask if the test
of column grade for each row is between 60 and 69. If the answer is “yes” which
means the test isTRUE, then the valuewill be “D”. If the test isFALSEwe’ll go to the
next question and so onuntil the last linewhere thefinal choice isF. (Note that for
readability the code is indented, and “F” is the alternate option for the test grade
%in% 90:99.)

We’ll use this statement is a very useful way in a future section (10.7.)

10.5 Summarising and grouping data

The following data can be found in the DEMO_I demographic data file:

• RIAGENDR: 1-male, 2-female (none missing)
• DMDMARTL: 1 Married, 2Widowed, etc.
• DMDEDUC2 - Education level - Adults 20+
• INDHHIN2 - Annual household income

Wewant to get some information by group, in this case we’ll group bymarital sta-
tus and then count the total number of observations for each case and we’ll store
this in column Counts. For each marital status code, we’ll then count howmany
women andmen are in each category that we’ll report in columns Mnum and Wnum
(the sum of these 2 on each line should be equal to the reported Counts column.)

For simplicity with income and education we’ll simply compute the mean of the

10.6. RECODING: STRINGREPLACEMENT 135

codes,which should still giveus an indicationof the level of incomeandeducation
for each category of marital status.

We’ll place the results in a user-defined R object so that we can reuse it in the next
section without re-writing the complete pipeline. Let’s call it Xsum for example

Xsum <- Master4 %>%
select(SEQN, RIAGENDR, DMDMARTL, DMDEDUC2, INDHHIN2) %>%
drop_na() %>%
group_by(DMDMARTL) %>%
summarise(Counts = n() ,

Mnum = sum(RIAGENDR == 1),
Wnum = sum(RIAGENDR == 2),
MeanIncCode = mean(INDHHIN2),
MeanEducCode = mean(DMDEDUC2))

Xsum # print output

A tibble: 8 x 6
DMDMARTL Counts Mnum Wnum MeanIncCode MeanEducCode

<dbl> <int> <int> <int> <dbl> <dbl>
1 1 2792 1481 1311 12.5 3.52
2 2 401 106 295 11.1 3.00
3 3 597 239 358 10.1 3.49
4 4 184 66 118 9.48 2.80
5 5 999 475 524 11.6 3.60
6 6 533 270 263 10.7 3.25
7 77 2 1 1 42 4
8 99 1 0 1 99 9

10.6 Recoding: string replacement

Theabove results areOKbut itwould be nice to be able to change someof the code
numbers to actual English word such as “married” or “single” in text. This can be

136 CHAPTER 10. DPLYR - DATAMANIPULATION

accomplished in many ways in dplyr but one of the simplest is to use recode()
as a special case within mutate() to overwrite a column.

Table 10.1: The DMDMARTL codes fromNHANES DEMO_I

Code or Value Value Description Count Cumulative

1 Married 2886 2886
2 Widowed 421 3307
3 Divorced 614 3921
4 Separated 192 4113
5 Never married 1048 5161
6 Living with partner 555 5716
77 Refused 2 5718
99 Don’t Know 1 5719
. Missing 4252 9971

We can then recode the DMDMARTL column of Xsumwith the following pipeline:

Xsum2 <- Xsum %>% mutate(DMDMARTL = recode(DMDMARTL,
`1` = "Married",
`2` = "Widowed",
`3` = "Divorced",
`4` = "Separated",
`5` = "Nevermarried",
`6` = "Living with partner",
`77` = "Refused",
`99` = "Don' Know")

)
Xsum2 # print out

A tibble: 8 x 6
DMDMARTL Counts Mnum Wnum MeanIncCode MeanEducCode
<chr> <int> <int> <int> <dbl> <dbl>

10.7. GETTING IT ALL TOGETHER 137

1 Married 2792 1481 1311 12.5 3.52
2 Widowed 401 106 295 11.1 3.00
3 Divorced 597 239 358 10.1 3.49
4 Separated 184 66 118 9.48 2.80
5 Nevermarried 999 475 524 11.6 3.60
6 Living with partner 533 270 263 10.7 3.25
7 Refused 2 1 1 42 4
8 Don' Know 1 0 1 99 9

(Credit: this example inspired by How to Recode a Column with dplyr in R2)

In fact 2 of the columns are notwell named andwe should rename Mnum and Wnum
to simply Men and Women in the table. This is donewith the dplyr rename() func-
tion:

Xsum2 %>% rename(Men = Mnum, Women = Wnum)

A tibble: 8 x 6
DMDMARTL Counts Men Women MeanIncCode MeanEducCode
<chr> <int> <int> <int> <dbl> <dbl>

1 Married 2792 1481 1311 12.5 3.52
2 Widowed 401 106 295 11.1 3.00
3 Divorced 597 239 358 10.1 3.49
4 Separated 184 66 118 9.48 2.80
5 Nevermarried 999 475 524 11.6 3.60
6 Living with partner 533 270 263 10.7 3.25
7 Refused 2 1 1 42 4
8 Don' Know 1 0 1 99 9

10.7 Getting it all together

Wenow know enough that we should be able to get it all together in an annotated
pipeline starting with Master4.

2https://cmdlinetips.com/2019/04/how-to-recode-a-column-with-dplyr-in-r/

https://cmdlinetips.com/2019/04/how-to-recode-a-column-with-dplyr-in-r/
https://cmdlinetips.com/2019/04/how-to-recode-a-column-with-dplyr-in-r/

138 CHAPTER 10. DPLYR - DATAMANIPULATION

10.7.1 Example 1: by gender

Let’s try to answer the question: “What is the average level of total cholesterol in
men andwomen from the Master4 dataset.?”

To answer the question we’ll need the following:

0. create an object to contain the results and redirect to it
1. Start with Master4 (inject data in the pipeline)
2. Select relevant columns
3. Remove NA rows
4. Group by gender
5. Summarize.

We now know how to do this in a data stream with a pipeline. Let’s write it and
add comment lines so we can remember later the purpose of the code:

TcholGender <- Master4 %>%
select columns
select(SEQN, RIAGENDR, LBXTC) %>%
fitler all rows to remove NAs
drop_na() %>%
Group by gender
group_by(RIAGENDR) %>%
summarise(

Men = sum(RIAGENDR == 1),
Women = sum(RIAGENDR == 2),
MeanTChol = mean(LBXTC))

Print results:
TcholGender

A tibble: 2 x 4
RIAGENDR Men Women MeanTChol

<dbl> <int> <int> <dbl>
1 1 3545 0 178.

10.7. GETTING IT ALL TOGETHER 139

2 2 0 3711 183.

The final table will be short but that is exactly what a summary should be.

The value for men is 177.75 based on a total of 3545 observations.

For women the we see is 182.65 based on a total of 3711 observations.

(See section 13.2.4 later to learn how these numbers were embedded within the
text automatically without copy/paste!)

10.7.2 Example 2: by gender and age

Let’s make things a bit more interesting with the question:

“Baseongenderandagegroup,what is themeanandstandarddeviationofPFAS
compounds, aswell as themean, standard deviation,minimum, andmaximum
values of total cholesterol inmen andwomen?”

One of the key word is “age group” as in the NHANES data age is a single integer
number with a range from 1 to 80 in RIDAGEYR column and therefore it is “up
to us” to create the age groups! This can be done rather easily within a combi-
nation of mutate() and with nested ifelse() statements within. Nesting the
ifelse() function within itself allowsmakingmultiple choices. (For a refresher
on ifelse() see section 10.4.1.)

We’ll have to use the appropriate columns of data, compute the creatinine adjust-
ment and summarize these values by age group for men and women.

AnewbaseR function is introducedhereformatC()whichwill force thenumbers
to be printed in scientific exponent for better clarity. (Try without and see the
difference! - this option was suggested on Stack Overflow.)

Thepipeline below is annotated to specify the function of each line and the results
are saved within a user-defined R object Example2.

Example2 <- Master4 %>%
select columns

https://stackoverflow.com/questions/39623636/forcing-r-output-to-be-scientific-notation-with-at-most-two-decimals

140 CHAPTER 10. DPLYR - DATAMANIPULATION

select(SEQN, RIAGENDR, RIDAGEYR, LBXMFOS, URXUCR, LBXTC) %>%
fitler all rows to remove NAs
drop_na() %>%
Creatinine adjustment
mutate (RATIO = (LBXMFOS/URXUCR)*10^-4) %>%
categorize ages in 5 groups:
Children: G0TO18, younger adults: G19TO35,
and older adults: G36TO65, seniors: G66TO79,
and 80 and older: G80.
mutate(AGEGROUP = ifelse(RIDAGEYR %in% 0:18, "G0TO18",

ifelse(RIDAGEYR %in% 19:35, "G19TO35",
ifelse(RIDAGEYR %in% 36:65, "G36TO65",

ifelse(RIDAGEYR %in% 66:79,
"G66TO79", "G80"))))) %>%

#
NOTE: this would be a place to split the pipeline in 2 sections
#
Group by gender first, age second
group_by(RIAGENDR, AGEGROUP) %>%
Summarize: count totals,
summarise(

Men = sum(RIAGENDR == 1),
Women = sum(RIAGENDR == 2),
MeanPFASR = formatC(mean(RATIO), format = "e", digits = 2),
sdPFASR = formatC(sd(RATIO), format = "e", digits = 2),
MeanTChol = mean(LBXTC),
sdTChol = sd(LBXTC),
minTChol = min(LBXTC),
maxTChol = max(LBXTC)
)

`summarise()` has grouped output by 'RIAGENDR'. You can override using the
`.groups` argument.

10.7. GETTING IT ALL TOGETHER 141

Print out the results
Example2

A tibble: 10 x 10
Groups: RIAGENDR [2]

RIAGENDR AGEGROUP Men Women MeanPFASR sdPFASR MeanTChol sdTChol minTChol
<dbl> <chr> <int> <int> <chr> <chr> <dbl> <dbl> <dbl>

1 1 G0TO18 175 0 8.47e-07 8.68e-07 152. 28.6 94
2 1 G19TO35 235 0 1.68e-06 1.88e-06 180. 35.6 98
3 1 G36TO65 382 0 3.24e-06 5.99e-06 198. 46.7 111
4 1 G66TO79 117 0 3.95e-06 3.92e-06 169. 35.1 90
5 1 G80 44 0 5.12e-06 6.42e-06 165. 35.0 101
6 2 G0TO18 0 141 7.70e-07 7.88e-07 158. 29.5 103
7 2 G19TO35 0 238 9.68e-07 1.31e-06 176. 38.5 100
8 2 G36TO65 0 459 2.35e-06 3.80e-06 201. 36.3 106
9 2 G66TO79 0 124 4.58e-06 6.32e-06 202. 48.5 84

10 2 G80 0 53 5.86e-06 6.29e-06 187. 34.1 126
... with 1 more variable: maxTChol <dbl>

The print-out might be truncated (depending on the format of this document.)

As expected the output is a tibble. A subtle but important note is in the
second line of the output: # Groups: RIAGENDR [2]. It may be impor-
tant at a later stage to use the dplyr function ungroup() tomodify e.g. the
column name or the values within that column.

The highest cholesterol value is 545 and is for a person of gender code 1 in age
group G36TO65.

(See section 13.2.4 later to learn how these numbers were embedded within the
text automatically without copy/paste!)

142 CHAPTER 10. DPLYR - DATAMANIPULATION

10.7.2.1 Sorting / arranging

The Example2 is a summary table (in tibble / data frame format) and can be fur-
ther sorted with the arrange() function. For example to see a table with the
cholesterol levels:

Example2 %>%
select(RIAGENDR, AGEGROUP, maxTChol) %>%
arrange(-maxTChol) %>%
head(2)

A tibble: 2 x 3
Groups: RIAGENDR [2]
RIAGENDR AGEGROUP maxTChol

<dbl> <chr> <dbl>
1 1 G36TO65 545
2 2 G66TO79 358

10.7.3 Base RBar plot

This summary table can be used with the base R function barplot() to create a
representation of themean cholesterol data. The default plot yields just gray bars
and not horizontal label. Here are examples plotted together on a single graph
that show the effect of some options.

As a reminder:

• las=2 is rotating the labels (seen in section 6.3.)

• col = RIAGENDR + 1 selects two of the nine colors in the base R color
palette (see colors in section 5.5.) Since RIAGENDR values are 1 and 2
the resulting colors would be black and red which is not very appealing.
Adding + 1 will choose red and green. Other numbers will select the next
colors in the list.

• names.arg= specifies the source of the horizontal axis names displayed.

10.7. GETTING IT ALL TOGETHER 143

These commands use the with() function but could also be written with the $
method, for example with Example2$AGEGROUP.

par(mfrow = c(1,2))
Plain version
with(Example2,barplot(MeanTChol))
Add white/gray alternate colors, rotated horiz labels
with(Example2,barplot(MeanTChol,

col = RIAGENDR + 1,
names.arg=AGEGROUP, las =2))

0
50

10
0

15
0

20
0

G
0T

O
18

G
19

TO
35

G
36

TO
65

G
66

TO
79

G
80

G
0T

O
18

G
19

TO
35

G
36

TO
65

G
66

TO
79

G
80

0

50

100

150

200

par(mfrow = c(1,1))

Error bars? There are methods in base R to add error bars and various examples
can be found online. However, the methods are all quirky and the best is now to
use ggplot to create such graphs.

144 CHAPTER 10. DPLYR - DATAMANIPULATION

10.7.4 ggplot2 versions

Example plots have beenmoved to section 11.2.

Chapter 11

ggplot2

Basic R has multiple, separate functions, each used for creating a specific type of
representation: boxplot, histogram, scatter plot etc. ggplot2 is an R package for
creating elegant data visualization using the conceptual philosophy that views a
plot as the assembly of different fundamental parts:

𝑃𝑙𝑜𝑡 = 𝐷𝑎𝑡𝑎 + 𝐴𝑒𝑠𝑡ℎ𝑒𝑡𝑖𝑐𝑠 + 𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑦

• Plot: the final graphics
• Data: tabular data in tibble or a data frame
• Aesthetics: Describe visual characteristics that represent data (position,
size, color, shape, transparency, fill, scales

• Geometry: defines the graphical representation: histogram, boxplot, scat-
ter plot. Defines the type of geometric objects that represent data (points,
lines, polygons.)

Each element is built as a layer based on a “grammar of graphics” all assembled
into a final plot.

The “grammar” contains more definitions for graphics elements

• coordinate system: e.g. Cartesian, polar, map projections
• geoms: describe type of geometric objects that represent data (points, lines,

145

146 CHAPTER 11. GGPLOT2

Figure 11.1: ggplot2 constructs graphs in layers using a grammar of graphics.

polygons
• aesthetics: describe visual characteristics that represent data (position,
size, color, shape, transparency, fill.)

• scales: for each aesthetic: log scales, color scales, size scales, shape scales.

• stats : describe statistical transformations that typically summarize data:
counts, means, medians, regression lines.

• facets: describe howdata is split into subsets and displayed asmultiple, sep-
arate small graphs.

• Theme: controls appearance of non-data elements

Exerpts fromHadleyWickham’s “ggplot2: Elegant Graphics for Data Anal-
ysis” (Wickham and Sievert (2016).) (The most revised version of the book
is also available free online: ggplot2-book.org/)

https://ggplot2-book.org/

11.1. TUTORIALS 147

ggplot2 is an R package for producing statistical, or data, graphics, but it is unlike
most other graphics packages because it has a deep underlying grammar. This gram-
mar, based on the Grammar of Graphics (Wilkinson, 2005), is made up of a set of
independent components that can be composed in many different ways. This makes
ggplot2 very powerful because you are not limited to a set of pre-specified graphics,
but you can create new graphics that are precisely tailored for your problem.

Without the grammar, there is no underlying theory, so most graphics packages are
just a big collection of special cases.

In his 2017 presentation Hadley Wickham mentions thatggplot was created be-
fore Tidyverse and lacks the Tidyverse philosophy on the ideas of distinguishing
and separating command (action) and query (computation) functions.(See refer-
ences in 8.) However it is well integrated within the Tidyverse and can be placed
at the end of a %>% pipeline as the last command.

11.1 Tutorials

There are many tutorials online to learn how to use ggplot. See Appendix G for a
table of just a few that seemuseful based on the number of exampleswith ggplot
code. There are manymore to be found with a simple web search.

Readers are encouraged to learn how to use ggplot2() on some of the
provided links in Appendix G before continuing with the examples in the
next section 11.2.

One suggestion isThe Complete ggplot2 Tutorial1 split over multiple documents.

IMPORTANTCONSIDERATION: Regardless of the chosen online tutorial,
your data may not be in the same shape (rows/columns) or have the same

1http://r-statistics.co/Complete-Ggplot2-Tutorial-Part1-With-R-Code.html

http://r-statistics.co/Complete-Ggplot2-Tutorial-Part1-With-R-Code.html
http://r-statistics.co/Complete-Ggplot2-Tutorial-Part1-With-R-Code.html

148 CHAPTER 11. GGPLOT2

attributes (numerical, continuous, categorical) that may make converting
online examples to fit your data challenging and frustrating. Being aware
of that fact may certainly help!

If the data you are working with is not “tidy” watching the lesson on the
tidyr package might be helpful - see data wrangling section 9.

Perseverance is always rewarded.

A personal example:

• a bar chart can be created by two types of geom: geom_bar() and
geom_col(). This simple knowledge can save you hours of frustration (see
help with ?geom_bar().)

• Categorical variables are usually recognized automatically, but numerical
and continuous variables have to be “made” into categories (or “levels”) by
using as.factor() but in some cases as.character()might also work
depending on the variable in question.

11.2 ggplot2 using dplyr chapter results

The dplyr chapter ended with the creation putting together a pipeline to create
a summary data table. The story will continue here as that chapter ended.

11.2.1 Barplot with qplot / ggplot

Splitting the pipeline above is most useful for using qplot or ggpolot.

Example 2 pipeline at midpoint before summarization, saved in object Mid. It is
the same code as above but stopped where the midpoint was suggested.

Mid <- Master4 %>%
select columns
select(SEQN, RIAGENDR, RIDAGEYR, LBXMFOS, URXUCR, LBXTC) %>%

11.2. GGPLOT2USING DPLYRCHAPTERRESULTS 149

fitler all rows to remove NAs
drop_na() %>%
Creatinine adjustment
mutate (RATIO = (LBXMFOS/URXUCR)*10^-4) %>%
categorize ages in 5 groups:
Children: G0TO18, younger adults: G19TO35,
and older adults: G36TO65, seniors: G66TO79,
and 80 and older: G80.
mutate(AGEGROUP = ifelse(RIDAGEYR %in% 0:18, "G0TO18",

ifelse(RIDAGEYR %in% 19:35, "G19TO35",
ifelse(RIDAGEYR %in% 36:65, "G36TO65",

ifelse(RIDAGEYR %in% 66:79,
"G66TO79", "G80")))))

Below are some plot examples using Mid. The addition of facet_grid splits the
data “as a function of” (~) gender in RIAGENDR.

Qplot
qplot(AGEGROUP, data = Mid, geom="bar")

It would be useful to visualize based on gender.

Qplot
qplot(AGEGROUP, data = Mid, geom="bar") +
facet_grid(~RIAGENDR)

To add color we need to use geom_bar instead of geom = "bar" so that we can
add an aesthetics (aes) request to color, as a factor of the values in RIAGENDR.

Qplot
qplot(x=AGEGROUP, data=Mid) +
facet_grid(~RIAGENDR) +
geom_bar(aes(fill = as.factor(RIAGENDR)))

A similar plot but with stacked bars can be achieved with ggplot.

150 CHAPTER 11. GGPLOT2

0

200

400

600

800

G0TO18 G19TO35 G36TO65 G66TO79 G80
AGEGROUP

Figure 11.2: Bar plot showing total count by age group without gener distinction.

We can avoid using as.factor that is necessary since RIAGENDR is coded as a
number that ggplot considers a numerical (perhaps continuous) rather than a cat-
egorical variable. We could avoid this problem by “recoding” the values of 1 and 2
to words such as male and female or Men and Women on a short pipeline before
the plot is done. (Review recode() in section 10.6.)

Mid %>%
mutate(RIAGENDR =

recode(RIAGENDR,
`1` = "Men",
`2` = "Women")) %>%

ggplot(aes(x = AGEGROUP)) +
geom_bar(aes(fill = RIAGENDR))

We now also have a better description, avoiding 1 and 2 as well as as.factor in

11.2. GGPLOT2USING DPLYRCHAPTERRESULTS 151

1 2

G0TO18 G19TO35G36TO65G66TO79 G80 G0TO18 G19TO35G36TO65G66TO79 G80

0

100

200

300

400

AGEGROUP

Figure 11.3: With facet_grid() the age distribution by gender is on two separate
graphs.

the legend.

A final touch could be to rename the column RIAGENDR to simply Gender and
AGEGROUP to Age group by using the rename() function (section 10.6.)

We can saved this in Mid2. Note the need of quote for Age group to take care of
the blank space.

Mid2 <- Mid %>%
mutate(RIAGENDR =

recode(RIAGENDR,
`1` = "Men",
`2` = "Women")) %>%

rename(Gender = RIAGENDR, "Age group" = AGEGROUP)

152 CHAPTER 11. GGPLOT2

0

200

400

600

800

G0TO18 G19TO35 G36TO65 G66TO79 G80
AGEGROUP

co
un

t RIAGENDR

Men

Women

Figure 11.4: Bar plot showng age group distribution by gender. Stack bars is the
default.

Warning: Using blank spaces in columns or in data in general is a source
of trouble.

Note that touse theAge group column inaggplot command it is required
to use backticks ` to have it considered a single entity in a similar way that
was used in the recode() function with numbers.

The have the bars side by side for each age group the additional position = op-
tion is introduced with option "dodge" (bars touch) or "dodge2" (white space
between bars.)

#
Mid2 %>% ggplot(aes(x = `Age group`)) +

11.2. GGPLOT2USING DPLYRCHAPTERRESULTS 153

geom_bar(aes(fill = Gender), position = "dodge2")

0

100

200

300

400

G0TO18 G19TO35 G36TO65 G66TO79 G80
Age group

co
un

t Gender

Men

Women

Figure 11.5: Side by side bar of gender count by age group is possible with the
dodge or dodge2 options.

It is possible to combine options:

Mid2 %>%
ggplot(aes(x = `Age group`)) +
geom_bar(aes(fill = Gender), position = "dodge2") +
facet_wrap(~ `Age group`)

11.2.2 Error bars andmeanTChol

Example derived from info at Plotting with ggplot: bar plots with error bars (See
also Appendix G.)

http://environmentalcomputing.net/plotting-with-ggplot-bar-plots-with-error-bars/

154 CHAPTER 11. GGPLOT2

G66TO79 G80

G0TO18 G19TO35 G36TO65

G0TO18G19TO35G36TO65G66TO79G80 G0TO18G19TO35G36TO65G66TO79G80

G0TO18G19TO35G36TO65G66TO79G80

0

100

200

300

400

0

100

200

300

400

Age group

co
un

t Gender

Men

Women

Figure 11.6: Side by side in each facet.

We need to use ungroup() as data were grouped when creating Example2. (Sec-
tion 10.7.2.)

Example2 %>%
ungroup to allow changes for mutate and rename

ungroup() %>%
mutate(RIAGENDR =

recode(RIAGENDR,
`1` = "Men",
`2` = "Women")) %>%

rename(Gender = RIAGENDR) %>%
start ggplot commands
ggplot(aes(AGEGROUP, MeanTChol)) +
geom_col(aes(fill = Gender)) +

11.2. GGPLOT2USING DPLYRCHAPTERRESULTS 155

geom_errorbar(aes(ymin = MeanTChol - sdTChol,
ymax = MeanTChol + sdTChol),

width=0.3) +
facet_wrap(~Gender) +
labs(y="Mean Total Cholesterol ± s.d. (mg/dL)", x = "Age by group")

Men Women

G0TO18G19TO35G36TO65G66TO79 G80 G0TO18G19TO35G36TO65G66TO79 G80

0

50

100

150

200

250

Age by group

M
ea

n
To

ta
l C

ho
le

st
er

ol
 ±

 s
.d

. (
m

g/
dL

)

Gender

Men

Women

156 CHAPTER 11. GGPLOT2

Chapter 12

UsingNHANESweights

Usingweights

Anexcellent demonstration of incorporatingNHANESprovidedweights as
a commented R code page is available on this blog post: How to Use Survey
Weights in R1 byMike Burke.

The code has a few base R commands butmost of the code is a perfect demonstra-
tion of the usefulness of the dplyr package and how to combine commands in
streams on small pipelines. It is also worth noting how the comments within the
code facilitates the understanding of the successive steps.

The code contains all the relevant and necessary information, including the ac-
tivation of packages with the library() function. If all packages are already in-
stalled the code can be “Copied/Pasted” in its entirety and proceedwithout errors.

To review the codewe’ll cut it in smaller portion andperhaps add a fewcommands
the check the content or status of the R objects that are defined along the way.

157

https://stylizeddata.com/how-to-use-survey-weights-in-r/
https://stylizeddata.com/how-to-use-survey-weights-in-r/

158 CHAPTER 12. USINGNHANESWEIGHTS

12.1 Header comments and packages

The top of the code containswell defined titles for each section informing the pur-
pose of the program and the needed packages.

When it is run typical information on the loading of tidyverse is displayed.
##
General Information
##

This is an RScript for showing how to use survey weights with NHANES data. You
can find a narrative to this script at:
https://stylizeddata.com/how-to-use-survey-weights-in-r/

##
Packages
##

For reading SAS XPT file from NHANES website
haven::read_xpt

library(haven)

For using survey weights
survey::svydesign, svymean, svyglm

library(survey)

For data wrangling
#dplyr::select, mutate, select, recode

library(dplyr)

12.2. ACQUIRINGNHANESDATA 159

12.2 AcquiringNHANES data

This chunk uses the haven package that has an easier method to download the
data directly from the web site without the need of an intermediate file as we saw
in section 6.2.1.

##
Load the dataset
##

Import NHANES demographic data

nhanesDemo <- read_xpt(url(
"https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/DEMO_I.XPT"))

12.3 Datawrangling: renaming and selecting data

This section of the code reorganizes and renames for easier understanding.

12.3.1 Renaming columns

This code portion has a goal tomake the data easier for humans to understand by
changing the name of the data columns. It is performed with base R subsetting
with $ and overwriting the specified column. However, this could also have been
done with Tidyverse method by using the rename() function as we have seen in
section 10.6.

Only columns that will be selected in the next step are altered. The only data spec-
ification is for INDFMPIR others can be found on theDEMO_Iweb page and listed
below:

https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/DEMO_I.htm

160 CHAPTER 12. USINGNHANESWEIGHTS

Table 12.1: Chosen columns and their description

Code Description range

INDFMPIR Ratio of family income to poverty 0 - 5
RIDAGEYR Age in years at screening 0 - 80
RIAGENDR Gender 1 -2
WTINT2YR Full sample 2 year interview weight 3293.928267 -

233755.84185
SDMVPSU Masked variance pseudo-PSU 1 to 2
SDMVSTRA Masked variance pseudo-stratum 119 to 133

NHANES data uses themethod described in article Primary sampling unit (PSU)
masking and variance estimation in complex surveys available online2.

##
Data Wrangling
##

Copy and rename variables so they are more intuitive. "fpl" is percent
of the federal poverty level. It ranges from 0 to 5.

nhanesDemo$fpl <- nhanesDemo$INDFMPIR

nhanesDemo$age <- nhanesDemo$RIDAGEYR

nhanesDemo$gender <- nhanesDemo$RIAGENDR

nhanesDemo$persWeight <- nhanesDemo$WTINT2YR

nhanesDemo$psu <- nhanesDemo$SDMVPSU

nhanesDemo$strata <- nhanesDemo$SDMVSTRA

2https://www150.statcan.gc.ca/n1/en/catalogue/12-001-X200800210759

https://www150.statcan.gc.ca/n1/en/catalogue/12-001-X200800210759
https://www150.statcan.gc.ca/n1/en/catalogue/12-001-X200800210759
https://www150.statcan.gc.ca/n1/en/catalogue/12-001-X200800210759

12.3. DATAWRANGLING: RENAMINGANDSELECTINGDATA 161

12.3.2 Selecting columns
This chunck selects only the columns that are desiredwith a pipeline using the select()
function.

Since there are 47 variables, we will select only the variables we will use in
this analysis.

nhanesAnalysis <- nhanesDemo %>%
select(fpl,

age,
gender,
persWeight,
psu,
strata)

12.3.3 Changing variable status to a factor

We encountered this problem before (section 10.6) when we needed to convert a
variable from “continuous” to a “factor” so that the data would be seen as a “cat-
egory” with just a few “options”. Just changing Integer numbers to characters
could accomplish that.

Here the author chooses to keep the code as integers but change the value formen
from 1 to 0 and forwomen from 2 to 1. The cryptic L in 0L and 1L is a special code
thatmeans “Long” and therefore doesnot represent the letter L as a character but
is a form of “coercion” “forcing” the number to be an integer in its forms recorded
by the computer.

What does Lmean?

There are multiple entries in Stack Overflow for this, including:

The author of this in R never explained why he chose the notation, but it is
shorter than as.integer(10), andmore efficient as the coercion is done
at parse time.

162 CHAPTER 12. USINGNHANESWEIGHTS

See more info in links:

– Clarification of L in R
– What’s the difference between 1L and 1?

Also in theRLanguageDefinitionbook (RCoreTeam (2020b))3,4 it is stated,
in reference to the number 1 (as in: class(c(1)))

“Perhaps unexpectedly, the number returned from the expression 1 is a nu-
meric. In most cases, the difference between an integer and a numeric
value will be unimportant as R will do the right thing when using the num-
bers. There are, however, times when we would like to explicitly create
an integer value for a constant. We can do this by calling the function
as.integer or using various other techniques. But perhaps the simplest ap-
proach is to qualify our constant with the suffix character L.”

“We can use the L suffix to qualify any number with the intent of making it
an explicit integer.”

Finally, internally this is related also to the amount of memory (RAM) used
by the computer tohold an integer and thatmaydepend if it is a32 bitor a
64 bit system. To know the larger Integer that R can hold can be revealed
by command .Machine$integer.max (starts with a dot.) For a 32 bit
computer thiswill be exactly 2147483647. Using64 bitmaybe extremely
beneficial for very large dataset. A 64 bit version of R can be downloaded
from info at http://r.research.att.com/ or https://mac.r-project.org/

Note that the first command mutating the gender column nhanesAnalysis is
in tidyverse format using the pipe, while the last command is in base R format.
Recode gender

nhanesAnalysis <- nhanesAnalysis %>%
mutate(gender = recode(gender, `1` = 0L,

`2` = 1L))

https://stackoverflow.com/questions/22191324/clarification-of-l-in-r
https://stackoverflow.com/questions/7014387/whats-the-difference-between-1l-and-1
http://r.research.att.com/
https://mac.r-project.org/

12.3. DATAWRANGLING: RENAMINGANDSELECTINGDATA 163

Convert "gender" to a factor variable. We need to do this so it isn't treated
as a continuous variable in our analyses

nhanesAnalysis$gender <- as.factor(nhanesAnalysis$gender)

At this point we can add commands to get a better understanding of the data for-
mat and content. For example:

head(nhanesAnalysis$gender)

[1] 0 0 0 1 1 1
Levels: 0 1

class(nhanesAnalysis)

[1] "tbl_df" "tbl" "data.frame"

dim(nhanesAnalysis)

[1] 9971 6

str(nhanesAnalysis)

tibble [9,971 x 6] (S3: tbl_df/tbl/data.frame)
$ fpl : num [1:9971] 4.39 1.32 1.51 5 1.23 2.82 1.18 4.22 NA 2.08 ...
..- attr(*, "label")= chr "Ratio of family income to poverty"

$ age : num [1:9971] 62 53 78 56 42 72 11 4 1 22 ...
..- attr(*, "label")= chr "Age in years at screening"

$ gender : Factor w/ 2 levels "0","1": 1 1 1 2 2 2 2 1 1 1 ...
$ persWeight: num [1:9971] 134671 24329 12400 102718 17628 ...
..- attr(*, "label")= chr "Full sample 2 year interview weight"

$ psu : num [1:9971] 1 1 1 1 2 1 1 2 1 2 ...
..- attr(*, "label")= chr "Masked variance pseudo-PSU"

$ strata : num [1:9971] 125 125 131 131 126 128 120 124 119 128 ...
..- attr(*, "label")= chr "Masked variance pseudo-stratum"

164 CHAPTER 12. USINGNHANESWEIGHTS

head(nhanesAnalysis)

A tibble: 6 x 6
fpl age gender persWeight psu strata

<dbl> <dbl> <fct> <dbl> <dbl> <dbl>
1 4.39 62 0 134671. 1 125
2 1.32 53 0 24329. 1 125
3 1.51 78 0 12400. 1 131
4 5 56 1 102718. 1 131
5 1.23 42 1 17628. 2 126
6 2.82 72 1 11252. 1 128

Thegender assignment can be confusing as the values are still 1 and 2 but the lev-
els arenow0 and1 as shown in the short table showinggender as<fct>meaning
factor, and as can be deciphered from the str() output for the gender line:

$ gender : Factor w/ 2 levels "0","1": 1 1 1 2 2 2 2 1 1 1 ...

12.3.4 Adding theweight information

##
Survey Weights
##

Here we use "svydesign" to assign the weights. We will use this new design
variable "nhanesDesign" when running our analyses.

nhanesDesign <- svydesign(id = ~psu,
strata = ~strata,
weights = ~persWeight,
nest = TRUE,
data = nhanesAnalysis)

Here we use "subset" to tell "nhanesDesign" that we want to only look at a

12.3. DATAWRANGLING: RENAMINGANDSELECTINGDATA 165

specific subpopulation (i.e., those age between 18-79 years). This is
important to do. If you don't do this and just restrict it in a different way
your estimates won't have correct SEs.

ageDesign <- subset(nhanesDesign, age > 17 &
age < 80)

We can printout the content of these:

nhanesDesign

Stratified 1 - level Cluster Sampling design (with replacement)
With (30) clusters.
svydesign(id = ~psu, strata = ~strata, weights = ~persWeight,

nest = TRUE, data = nhanesAnalysis)

ageDesign

Stratified 1 - level Cluster Sampling design (with replacement)
With (30) clusters.
subset(nhanesDesign, age > 17 & age < 80)

12.3.5 Statistics

##
Statistics
##

We will use "svymean" to calculate the population mean for age. The na.rm
argument "TRUE" excludes missing values from the calculation. We see that
the mean age is 45.648 and the standard error is 0.5131.

svymean(~age, ageDesign, na.rm = TRUE)

166 CHAPTER 12. USINGNHANESWEIGHTS

mean SE
age 45.648 0.5131

Since gender is a factor variable, "svymean" will treat it as such and give us
the proportion of women. We see that men are 48.601% and woman are 51.399% of
the population in this age of 18 to 79.

svymean(~gender, ageDesign, na.rm = TRUE)

mean SE
gender0 0.48601 0.006
gender1 0.51399 0.006

Now we will run a general linear model (glm) with a gaussian link function.
We tell svyglm that nhanesAnalysis is the dataset to use and to apply the
"svydesign" object "ageDesign." I won't dive into the results here, but you
can see that age is positively correlated with FPL and that women are
predicted to have a lower FPL than men.

output <- svyglm(fpl ~ age +
gender,

family = gaussian(),
data = nhanesAnalysis,
design = ageDesign)

We can add the following to show output results:

output

Stratified 1 - level Cluster Sampling design (with replacement)
With (30) clusters.
subset(nhanesDesign, age > 17 & age < 80)

Call: svyglm(formula = fpl ~ age + gender, design = ageDesign, family = gaussian(),
data = nhanesAnalysis)

12.3. DATAWRANGLING: RENAMINGANDSELECTINGDATA 167

Coefficients:
(Intercept) age gender1

2.44519 0.01488 -0.21055

Degrees of Freedom: 5013 Total (i.e. Null); 13 Residual
(602 observations deleted due to missingness)

Null Deviance: 14170
Residual Deviance: 13820 AIC: 20920

In the comments it is said “… you can see that age is positively correlatedwith FPL
and that women are predicted to have a lower FPL thanmen.”

Thedefinition of the function svyglm() in help is: “Fit a generalised linearmodel
to data from a complex survey design, with inverse-probability weighting and
design-based standard errors.”

The final data are located in output$coefficients:

output$coefficients

(Intercept) age gender1
2.4451935 0.0148763 -0.2105470

Most likely from the conclusion the following is done:

1. Compute the regression line for age
2. Compute a correlation coefficient for gender

From the printed results we can see:

• The intercept 2.4451935 is where the regression line crosses the vertical 𝑦
axis.

• The slope defining the relationship with age is 0.0148763

• The third itemwould be the correlation coefficient with gender, and is neg-
ative at -0.210547. Since it is labeled as gender1 that should mean “gen-
der level 1” which is the code for women after the changes added with the

168 CHAPTER 12. USINGNHANESWEIGHTS

mutate() function to change the label numbers.

Chapter 13

Markdown andReproducible
research

Reproducible research is becoming a vast field. This chapter is to provide a flavor
of what’s possible in creating a “live” document for data analysis. There are many
sources online, here is one from a 6-hour workshop from the “Monash Bioinfor-
matics Platform”: Reproducible Research in R1 (2019-07-25).

What is Reproducible Research?a

Research is considered to be reproducible when the exact results can be reproduced
if given access to the original data, software, or code. Reproducible research is some-
times known as reproducibility, reproducible statistical analysis, reproducible data
analysis, reproducible reporting, and literate programming.
Literate programming is simply telling a “story” with the embedded code
which is “rendered” in the final output.

ahttps://www.displayr.com/what-is-reproducible-research/

Reproducible research usually refers more to the analysis of the data, while
research that is replicable is the idea that research results can be reproduced by

1https://monashdatafluency.github.io/r-rep-res/

169

https://monashdatafluency.github.io/r-rep-res/
https://en.wikipedia.org/wiki/Literate_programming
https://www.displayr.com/what-is-reproducible-research/
https://monashdatafluency.github.io/r-rep-res/

170 CHAPTER 13. MARKDOWNANDREPRODUCIBLERESEARCH

Figure 13.1: Reproducible research is more about computer analysis, replicable
research is about reproducing research results.

independent researchers using different methods.

Table 13.1: A course on reproducible research using R

Name CourseWeb site

R for Reproducible Research https://annakrystalli.me/rrresearch/index.html

https://annakrystalli.me/rrresearch/index.html

13.1. MARKDOWN 171

13.1 Markdown

What is markdown? Markdown is a lightweight markup lan-
guage with plain-text-formatting syntax, created in 2004 by John Gru-
ber with Aaron Swartz.a (Note the play on words between markdown and
markup!)
The philosophy or markdown is described by John Gruber on his web site:
“DARING FIREBALL”b.

ahttps://en.wikipedia.org/wiki/Markdown
bhttps://daringfireball.net/projects/markdown/

https://daringfireball.net/projects/markdown/
https://en.wikipedia.org/wiki/Markdown
https://daringfireball.net/projects/markdown/

172 CHAPTER 13. MARKDOWNANDREPRODUCIBLERESEARCH

At its origin, JohnGruber createdmarkdown to easily create HTML pages with an
easy syntax. Themarkdown document is a plain text file that in the end is used as
a source to create an HTML page.

This very document is being written with the help of markdown!

A web page is written unHTML or “Hyper TextMarkup Language” and its syntax
requires a lot of characters to specify a format. The name “markdown” is a play on
word and its syntax is very easy. Here is an example to make a word bold:

• HTML: word
• Markdown: **word**

Anothermore remarkable examplewould be the “heading” as it is used on theweb
but also in MSWord as a section title:

• HTML: <h1>heading1</h1> -> requires 9 characters on both sides of
heading1

• Markdown: # heading1 -> requires a single character!

The result is that text files that are formatted inmarkdown can be read “as is” very
easily, while a page of HTML code would bemuch harder for a human to read “as
is”. In fact that was a key design goal: readability.

13.1.1 Markdown syntax

The basic syntax is illustrated on this page: www.markdownguide.org/basic-
syntax/2

Thebasicmarkdownsyntax canbe summarized ina short table fromhttps://www.
markdownguide.org/cheat-sheet/3.

2https://www.markdownguide.org/basic-syntax/
3https://www.markdownguide.org/cheat-sheet/

https://www.markdownguide.org/basic-syntax/
https://www.markdownguide.org/basic-syntax/
https://www.markdownguide.org/cheat-sheet/
https://www.markdownguide.org/cheat-sheet/
https://www.markdownguide.org/basic-syntax/
https://www.markdownguide.org/cheat-sheet/

13.1. MARKDOWN 173

Table 13.2: Basic Markdown Syntax

Element Markdown Syntax

Heading # H1 ## H2 ### H3
Bold **bold text**
Italic *italicized text*
Blockquote > blockquote
Ordered List 1. First item 2. Second item 3. Third item
Unordered List - First item - Second item -Third item
Code code
Horizontal Rule - - -
Link [title](https://www.example.com)
Image ![alt text](image.jpg)

Extended syntax can be useful for making tables (such as the table describing
basic markdown) or footnotes and listed further down on the same guide page.

Basic andmost extendedmarkdown syntax are included in RStudio.

Interactive tutorial

One easy way to learn how to use markdown is to go through the very easy
interactive exercises dynamically rendered in the free interactive tutorial
at www.markdowntutorial.com/ available in English, Spanish, French,
Korean, and Japanese.

In turn RStudio created a method to add code within a markdown file which is
then called an “Rmarkdown” file.

Regularmarkdown can easily be learned from the above links, the next section will
provide details on R markdown.

https://www.markdowntutorial.com/

174 CHAPTER 13. MARKDOWNANDREPRODUCIBLERESEARCH

13.2 Rmarkdownmagic

Before experiencing the Magic of R markdown it is necessary to have an
even rudimentary understanding of “plain” markdown - see previous sec-
tion 13.1.1.

Markdown allows a document to be formatted easily but Rmarkdown provides the
means to create a dynamic document that makes it easy to maintain both the nar-
rative (text, story, information) and the analysis in the form of computer code
that is woven within the file and can automatically embed data, tables and even
plots and graphs automatically. Since this is all automated, if the original data is
changed, converting the Rmarkdown document once more to a final output for-
mat (HTML,PDF, MSWord) will recompute and update everything, literally with
one click!

This is a valuable tool in the context of Reproducible research as a paper could be
completely self-contained within an Rmarkdown document: the story, the analy-
sis code, and the figures (automatically generated by the analysis code.)

The free online book R Markdown: The Definitive Guide4 by Yihui Xie, J. J.
Allaire, Garrett Grolemund (2020-04-26) should prove a very valuable refer-
ence.

See more resources in Appendix H.

13.2.1 Before your start

Some packages are needed to create output from Rmarkdown documents
which you can install in advance, for example with:

install.packages(c("knitr", "rmarkdown", "markdown"))

https://bookdown.org/yihui/rmarkdown/

13.2. RMARKDOWNMAGIC 175

However, the newest versions of RStudio will prompt you if you want to
install a package that is necessary but not yet installed.

The knitr package is used to transform the R markdown .Rmd file into
a beautifully rendered document in various formats. The knitr package
name reflects the “knitting together” (weaving together) the text and the em-
bedded literal programming code and at the same timemakes things look
a lot more “neater.”

13.2.2 How to create an Rmarkdownfile

TASK: open an Rmarkdown template

To follow these exercises create a new Rmarkdown file with the menu cas-
cade:

File -> New File -> R Markdown...

In the new window replace "Untitled"with a title for your document.
Keep HTML selected as the “Default output format”
PressOK
Save the file now (or later) and provide a name for the file.
The new file will have a filename extension of .Rmd

The top of the file will look something like this:

176 CHAPTER 13. MARKDOWNANDREPRODUCIBLERESEARCH

title: "Test1"
author: "My Name"
date: "7/22/2020"
output: html_document

WARNING!DONOTTOUCHTHISSECTIONYET!

This section is a special header that provides instructions on how to export
the final document (output: html_document) and can be changed with
further instructions. This is formatted in a simple language called YAML5.

The rest of the page is meant to write text with or without (regular) markdown
formatting, but also can contain R code that can be shown or hidden, executed or
inert. It is worth pointing out that RStudio supports many more languages that
just R and are called “engines” in that context6.

13.2.3 Adding R code

The whole purpose of an .Rmd file is to tell a story with markdown and perform
the analysis at the same timewhen it is rendered. This is accomplished by adding
R code “chunks” within the file that will be evaluated when the weaving/knitting
of the file output is done.

To add R code we can use the “Insert” button on Rstudio bar, or simply write the
code between special characters that specify that it is code andnot just text in this
way:

6Command names(knitr::knit_engines$get()) will print supported languages (‘en-
gines’). Install knitr package first.

13.2. RMARKDOWNMAGIC 177

```{r}
# Here goes the R code
V <- c(1:10)
```

Anamecanbegiven to the “chunk” anda variousnumber of options that canmod-
ify the results of what happens when the final document is knitted. For example
the code could be running but not shown in the final document by adding echo
= FALSE. (Complete chunk options list(PDF)7.) It is easier to see an example:

title: "Tiny Rmd"
output: html_document

In R it is possible to tell a story and weave computer code
to perform an analysis at the same time by adding "chunks" of code.
This code will create a vector and take the log10 of each value

```{r mychunk, eval=TRUE}
# This chunk will be computed
V <- c(1:10)
log10(V)

```

The values are automatically printed

When the knit button is pressed the rendering in HTMLwill look like this:

Exercise 13.1. Exercise

You can try to Copy/Paste the text for Tiny Rmd file above and paste it within a
new .Rmdfile (details in section 13.2.2,) replacing all of the demo contentwith the
pasted text of Tiny Rmd. Then press the knit button and see the result!

7https://rstudio.com/wp-content/uploads/2015/03/rmarkdown-reference.pdf

https://rstudio.com/wp-content/uploads/2015/03/rmarkdown-reference.pdf
https://rstudio.com/wp-content/uploads/2015/03/rmarkdown-reference.pdf

178 CHAPTER 13. MARKDOWNANDREPRODUCIBLERESEARCH

In R it is possi ble to tell a story and weave computer code to perform an analysi s at the sa me time by adding
“chunks” of code. This code will create a vector and take the log10 of each value

The values are automatically printed

Figure 13.2: HTML output of Tiny Rmd as knit output.

13.2.4 Very tiny Rmdfile: Inline code

Here is one of the most useful and somewhat advanced ways of using R code to
avoid “Copy/Paste” of information that may be unstable and could change over
time. For example the size (length, dimensions, etc.) of the provided data for R to
analyze may be updated with new information.

Here is an example of a very small file that shows how R code can be embedded
within the text and rendered in the context of reporting.

• The YAML is very minimal

• the first line prints out 5 letters from the English alphabet (LETTERS is pre-
defined in R.)

• The second line embeds two commands separated by a semi-colon ; that
first defines a vector of numbers, and then computes the sum of the
numbers.

• In both cases the results are shown in bold.

13.2. RMARKDOWNMAGIC 179

title: "Tinyest Rmd"
output: html_document

Some random letters: **`r sample(LETTERS, 5)`**

Let's make a vector and add all its numbers:
`r vec <- c(1:10); sum(vec)`.
Only the results will show on the final print.

Pressing the RStudio Knit button will convert this .Rmd file into an HTML docu-
ment.

Tinyest Rmd

Some random letters: O, A, G, U, L

Let’s make a vector and add all its numbers: 55 - but only the results will show on the final print.

Figure 13.3: HTML output for Tinyest Rmarkdown conversion with Knit button.

Exercise 13.2. Exercise:The story of vector V

You can read the “magical story of vector V” from the the text in Appendix I that
you can Copy/Paste into a new .Rmd file.

This is a way to learn by example about R code chunks and the very useful inline R
code.

The magic is perhaps in the story, but more importantly it is also the demonstra-
tion of weaving text and code together in a single rendered document.

180 CHAPTER 13. MARKDOWNANDREPRODUCIBLERESEARCH

13.3 Other formats

The two formats that should work by default are HTML and Word. Most people
would be interested in created a PDF but that requires the installation of a type-
setting engine called LATEX “LaTeX” (pronounced “lay tek.”) In the early days this
required the installation of software independent of RStudio that was heavy in
size in the multiple Gigabytes (most are 5Gb or more.)

TinyTex for PDF

Fortunately there is now a special package called TinyTex
that ismuch easier to install andmuch smaller in size at about 150Mbonly.
Information on the package and installation instructions can be found on
yihui.org/tinytex/ (Yihui Xie is a software engineer at RStudio and author
of knitr and Tinytex among others.)

Optional Installation TinyTex

The tinytex R package (written as bold, lower case) is used to install TinyTeX,
its distribution version of “Latex” LATEX (pronounce “la-tek.”)

The installation is simple and requires 2 easy steps:

1. install the tinytex package.

2. use tinytex to install the TinyTeX distribution.

Here are the 2 commands to accomplish this8 plus a third, commented command
to uninstall if necessary.

8https://yihui.org/tinytex/

https://yihui.org/tinytex/
https://yihui.org/tinytex/

13.4. AWORDONYAML 181

install.packages('tinytex')
tinytex::install_tinytex()
to uninstall TinyTeX, run tinytex::uninstall_tinytex()

13.4 Aword on YAML

YAML is a language and therefore can be overwhelming, confusing and offer too
many “options” (as most computer languages do.)

However, as the language of theheaderof the.Rmdfiles there are just a few things
that are of real importance.

13.4.1 Limits

The header is limited by three dashes at the top and at the bottom. Beyond this
limit it become the realm of Rmarkdown.

13.4.2 Indentation andWhite space

White space is part of YAML’s formatting. Unless otherwise indicated, newlines
indicate the end of a field.

Indentations:
* used to structure a YAML document.
* only use white space, never Tabs.
* in .Rmd indentation is 0, 2 or 4 spaces exactly.

13.4.3 Automaticmodifications

Parts of the YAML header may change automatically depending on actions. For
example, suddenly decided to knit a simpledocument to anew formatwillmodify
the output statement.

182 CHAPTER 13. MARKDOWNANDREPRODUCIBLERESEARCH

title: "Tiny Rmd"
output: html_document

In the original version the keyword output: line contains a colon (:) followed the
expected document format.

After requesting a different format, the output will automatically be changed,
each time. The new output: line is now ending with a newline and the nowmul-
tiple formats are each on a separate line indented by exactly 2 spaces (not 1, 3, or
4, or tab all of which would cause an error later.) The last document format re-
quested will always be the one shown on top in the first indented line, updated
each time the document is knitted.

title: "Tiny Rmd"
output:
word_document: default
html_document: default
pdf_document: default

13.4.4 Quotes

Test should pruudently be placed within double quotes, for example title:
"Tiny Rmd" even though title: Tiny Rmd would also work. Adding the
quotes as it is done by default prevents text with special characters to cause an
error.

13.4.5 Date

Whenanew.Rmdfile is created it is given thedate trueon thatmomentandwould
not change later.

13.4. AWORDONYAML 183

It is possible to use code so that the date is updated each time the document is
knitted into a final format. Here are options to format the date at that moment:

• date: "Last Updated:" `r Sys.Date()` "

• date: ' `r Sys.Date()` '

• date: " `r format(Sys.time(), '%d %B, %Y')` "

• date: " `r format(Sys.time(), '%Y, %B %d')` "

Which would result in the following formats:

• date: "Last Updated: 2022-07-07"
• date: '2022-07-07'
• date: "07 July, 2022"
• date: "2022, July 07"

13.4.6 YAML resources

For further reference see the online book RMarkdown: TheDefinitive Guide that
details advanced options for YAML headers:

• HTML content: https://bookdown.org/yihui/rmarkdown/html-document.
html

• PDF content: https://bookdown.org/yihui/rmarkdown/pdf-document.
html

• MSWord: https://bookdown.org/yihui/rmarkdown/word-document.html
• General output formats: https://bookdown.org/yihui/rmarkdown/output-
formats.html

An interesting way to see if your YAML header has any errors:

• YAML validator: http://www.yamllint.com/

https://bookdown.org/yihui/rmarkdown/
https://bookdown.org/yihui/rmarkdown/html-document.html
https://bookdown.org/yihui/rmarkdown/html-document.html
https://bookdown.org/yihui/rmarkdown/pdf-document.html
https://bookdown.org/yihui/rmarkdown/pdf-document.html
https://bookdown.org/yihui/rmarkdown/word-document.html
https://bookdown.org/yihui/rmarkdown/output-formats.html
https://bookdown.org/yihui/rmarkdown/output-formats.html
http://www.yamllint.com/

184 CHAPTER 13. MARKDOWNANDREPRODUCIBLERESEARCH

Chapter 14

Report-template

Here are a few suggestions to help in the writing of a “report” for the analysis of
your NHANES chemical data that can be created as an R markdown document
containing all of the report narrative (story,) analysis code (shown or hidden,)
graphs and illustrations.

A single file with most of the code from this chapter as a “template” can be found
online as a plain text file but with either .Rmd or .Rmd.txt filename extensions.
The content is identical in both files. Depending on the settings of your brownser
most likely the .txt version will appear within the browser. For just .Rmd it
may appear within the browser of be downloaded automatically in your default
Downloads folder.

Sample report template in Rmarkdown for download:

– SampleReport.Rmd.txt1

– SampleReport.Rmd2

185

https://static-bcrf.biochem.wisc.edu/courses/templates/SampleReport.Rmd.txt
https://static-bcrf.biochem.wisc.edu/courses/templates/SampleReport.Rmd

186 CHAPTER 14. REPORT-TEMPLATE

14.1 Overall template format

The report should be in the Rmarkdown format with a YAML header and a body
with markdown and R code. A minimal outline could be:

title: "NHANES report"
author: "your name"
output: html_document

Preface {-}

Some background on something if wanted. Or remove

Introduction

Some useful into.

Chemical info

The chemical studied and why

NHANES data

What is it, where to find

Download

In this section the download code an optionally be hidden

Selected data

14.2. YAMLEXAMPLE 187

What are the columns of data to be used.

Analysis

Some kind of analysis. With R code shown or not.
May include tables, graphics etc.

Results

This may be a summary of some of the analysis

Conclusion

Is there a general conclusion that can be drawn from the analysis and the results?

14.2 YAML example

This part may be simple or more complex, for example requesting figure caption
or requesting the automatic creation of a table of contents with a specified num-
ber of levels. For HTML the table can be “floating” as shown on the left hand side
for easier navigation.

Here is an example YAML for all 3 major output formats with these options. The
line fontsize: 12pt is most useful for PDF output avoiding the 10pt default.

title: "NHANES Report Example"
author: "Your Name Here"
date: " 07 July, 2022 "
output:
word_document:
toc: true
toc_depth: 2

188 CHAPTER 14. REPORT-TEMPLATE

fig_caption: true
pdf_document:
toc: true
toc_depth: 2
fig_caption: true
number_sections: true

html_document:
toc: true
toc_depth: 2
toc_float: true
fig_caption: true
number_sections: true

fontsize: 12pt

14.3 General chunk options

The default Rmarkdown template in RStudio automatically adds this general op-
tion chunk that can be expanded. For example, tomake all R code hidden change
echo = TRUE to FALSE. The code in these options apply to all code in the docu-
ment but can be overridden by placing the opposite or desired option within the
individual {r} tags in each chunk.

```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```

14.4 Preamble, Preface and Introduction

“Preamble” or a “Preface” are often optional but usually not numbered as the rest
of the sections. To prevent numbering we add {-} so that the numbering would
start at the next heading tag # for example for # Introduction.

14.5. ACTIVATINGPACKAGES 189

14.5 Activating packages

Itmay be useful to activate some packages at the beginning tomake sure they are
“up” for later. Hiding the code is useful for a generic report. The default RStu-
dio options of echo=FALSE and warning=FALSE are not enough to suppress all
messages. The following code should load tidyverse quietly:

```{r eval=TRUE, echo=FALSE, warning=FALSE}
# Load quietly here and add a code below with eval=FALSE
options(tidyverse.quiet = TRUE)
library(tidyverse)
```

14.6 Liveweb links

NHANES or other web references can be created as “live” links in all document
typesbyusing the format[Name in Square brackets](http://web.site.address.here)

For example: [NHANES web site](https://www.cdc.gov/nchs/nhanes/).

14.7 Embedding graphs

Graphs can be embedded with optional legends. The age distribution histogram
without showing R code. Since age ranges from 0 to 80 there are 81 “slots” all
represented individually by specifying breaks = 81. Alignment can be speci-
fied. Optionally width and height are added and expressed in inches by adding
fig.width=7, fig.height=5.

```{r echo = FALSE, fig.cap="Histogram of age distribution", fig.align='center'}
with(nhanesDemo , hist(RIDAGEYR, breaks = 81))
```


190 CHAPTER 14. REPORT-TEMPLATE

14.8 Inline code

Inline code is the secret that can help make your report precise and useful as it
allows you to access and print information in the report that you do not have to
know andmost of all that is not necessary to copy/paste.

Inline code can be fancy and contain more than just a simple computation such
as `r 1+1`. Indeed it can even be a pileline as shown in this example:

There are `r dim(nhanesDemo)[1]` observation for `r select(nhanesDemo,
RIDAGEYR) %>% filter(RIDAGEYR < 18) %>% count()` children
participants less than 18, `r select(nhanesDemo, RIDAGEYR) %>%
filter(RIDAGEYR > 18 & RIDAGEYR < 80) %>% count()` adult par-
ticipants between 18 and 79 and `r select(nhanesDemo, RIDAGEYR) %>%
filter(RIDAGEYR >= 80) %>% count()` adults over the age of 80.

Thiswill be rendered in the final text as:
There are 9971 observation for 3979 children participants less than 18, 5478
adult participants between 18 and 79 and 376 adults over the age of 80.

14.9 Math formula

Examples of math formulas can be found at:

• Mathematics in RMarkdown R Pruim3 and

• An Example RMarkdown4

One $ sign keep the formula in line. Two $$ make the formula displayed on a
different line. For example:

The creatinine adjustment requires a division and a multiplication by 10−4. The

3https://www.calvin.edu/~rpruim/courses/s341/S17/from-class/MathinRmd.html
4http://www.math.mcgill.ca/yyang/regression/RMarkdown/example.html

https://www.calvin.edu/~rpruim/courses/s341/S17/from-class/MathinRmd.html
http://www.math.mcgill.ca/yyang/regression/RMarkdown/example.html
https://www.calvin.edu/~rpruim/courses/s341/S17/from-class/MathinRmd.html
http://www.math.mcgill.ca/yyang/regression/RMarkdown/example.html

14.10. ADDENDUM 191

final formula is
𝑟𝑎𝑡𝑖𝑜 = 𝐴𝑛𝑎𝑙𝑦𝑡𝑒

𝐶𝑟𝑒𝑎𝑡𝑖𝑛𝑖𝑛𝑒 ∗ 10−4

14.10 Addendum

In a technical report is it customary to also report how your R session was at
the moment of computation. This is accomplished by adding the command
sessionInfo() In this example the eval=FALSEmakes that the code is not run.
Update as needed depending on the type of report that you write and who it is
for.

sessionInfo()

192 CHAPTER 14. REPORT-TEMPLATE

Chapter 15

Report resources

Here are a few useful resources that can be useful when creating a report.

15.1 Illustrations

It is on occasion desirable to add an illustration to a report that may either high-
light an idea or a concept. However, it is not always possible to use just any image
found on the Internet due to copyright issues.

The followingweb site provide free images, illustrations, line art at no charge and
without the need of citation. In fact many illustrations were used from one of
these in this document. Illustrations are marked

• Free to use.
• No attribution required.

Table 15.1: Free online images and illustrations

Name Web site

Pixabay https://pixabay.com/
Pexels https://www.pexels.com/

193

https://pixabay.com/
https://www.pexels.com/

194 CHAPTER 15. REPORTRESOURCES

15.1.1 Adding and sizing images

Images can be too large and especially for HTML smaller physical and file sizes
are desirable and in that case it is better to use an image editor to reduce the file
size to start with.

The standard markdown code to add an image in .png, .gif, or .jpg format
is simple, for example using the image myimage.png in the current directory or
mydir directory. The square bracket can be left empty or can contain “Alt text”
which is shown in the web browser if the mouse is “hovered” over the included
image.

•
•
• ![Alt text here](myimage.png)

Bydefault thisnotationwill present the image “as it is” in itsdimensionsand there
is no figure legend possible. Fortunately it is possible to control the width (only
but the height is deduced) by adding a specification in pixels inside curly brackets
connected to the last parenthesis. For example:

• {width=100px}

However, inRmarkdown itmaybebest touse theknitr::include_graphics()
function. For example:

```{recho=FALSE, fig.cap="Caption here"}
### Include image name
knitr::include_graphics("images/myimage.png")
```

15.2 Markdown tables

Creating tables in markdown is not very difficult but it can be time consuming
if the table is a bit complicated. Tableconvert offers conversion between various
table formats fromfiles or pasted text and TableGenerator can create empty table

https://tableconvert.com/
https://www.tablesgenerator.com/markdown_tables

15.2. MARKDOWNTABLES 195

to fill.

Table 15.2: Table format conversions inclusing Excel and
markdown.

Name Web site

Table convert tableconvert.com
Tables Generator tablesgenerator.com

https://tableconvert.com/
https://www.tablesgenerator.com/markdown_tables

196 CHAPTER 15. REPORTRESOURCES

Appendix A

The story of R

Note: appendices are labeled with letters.

A very complete history of Rwas written by Roger D. Peng that includes a history
of its ancestors S and S-Plus and available on the web version1 of his book (Peng
(2016)) as well as a 16min video2 detailing the creation of S and then R.

S is a statistical programming language developed primarily by John Chambers
and (in earlier versions) Rick Becker and Allan Wilks of Bell Laboratories. The
aim of the language, as expressed by John Chambers, is “to turn ideas into software,
quickly and faithfully”.

R is a programming language and free software environment for statistical com-
puting and graphics.R was developed by Ross Ihaka and Robert Gentleman. The
reoprted their experience developing R in 1996 (Ihaka and Gentleman (1996).)

1https://bookdown.org/rdpeng/rprogdatascience/history-and-overview-of-r.html
2https://youtu.be/STihTnVSZnI

197

https://youtu.be/STihTnVSZnI
https://en.wikipedia.org/wiki/S_(programming_language)
https://en.wikipedia.org/wiki/John_Chambers_(statistician)
https://en.wikipedia.org/wiki/Bell_Labs
https://en.wikipedia.org/wiki/R_(programming_language)
https://en.wikipedia.org/wiki/Ross_Ihaka
https://en.wikipedia.org/wiki/Robert_Gentleman_(statistician)
https://bookdown.org/rdpeng/rprogdatascience/history-and-overview-of-r.html
https://youtu.be/STihTnVSZnI

198 APPENDIX A. THE STORYOFR

Appendix B

Simplemath

It is assumed that students are familiar with basicmathematics and their related
symbols or arithmetic operators. However, some symbols may be different. For ex-
ample themultiplication symbol within R is * rather than x or . whenwriting it by
hand.

Here are a few reminders of mathematical operators and their symbols for arith-
metic and logical operations.

The first 3 minutes of this 7 minutes video Arithmetic, Rational, Logical Operators -
Introduction to R Programming - Part 41 summarizes the tables below.

B.1 Arithmetic operators

Here is a table defining the arithmetic operators represented by the symbols used
within R. These operators are used on numbers or groups of numbers.

1https://youtu.be/wX_ArwIiRxs

199

https://youtu.be/wX_ArwIiRxs

200 APPENDIXB. SIMPLEMATH

Table B.1: Arithmetic operators and their symbols in R

Operator Description

+ Addition
- Subtraction
* Multiplication
/ Division
^ or ^ Exponentiation
%% Modulo

Depending on the complexity of the calculation it may be necessary to use paren-
thesis (()) to separate values.

It is important to remember the notion of precedence as detailed below from
Wikipedia.2

In mathematics and computer programming, the order of operations (or opera-
tor precedence) is a collection of rules that reflect conventions about which proce-
dures to perform first in order to evaluate a givenmathematical expression.*

The order is: Parentheses, Exponents, Multiplication, Division, Addition,
Subtraction. In the United States, the acronym PEMDAS is common*. (SeeWiki
reference for other countries.)

Misinterpreting any of the above rules to mean “addition first, subtraction after-
ward” would incorrectly evaluate the expression

10 − 3 + 2.

The correct value is 9 (not 5, as would be the case if you added the 3 and the 2
before subtracting from the 10).

2https://en.wikipedia.org/wiki/Order_of_operations

https://en.wikipedia.org/wiki/Order_of_operations

B.2. BOOLEANVALUES 201

B.2 Boolean values

A Boolean value is either true or false. These values can be the result of a logical
operator (see below) or a statementwithin an R function, for example stating that
there is (T) or there isn’t (F) a header in a table of numbers.

Table B.2: Boolean values

Value Notation

true TRUE or T in uppercase
false FALSE or F in uppercase

B.3 Rational operators

Table B.3: Rational operators

Operator Description

< Less than
<= Less than or equal to
> Greater than
>= Greater than or equal to
== Exactly equal to
!= Not equal to

B.4 Logical operators

Logical operators can be used to create conditional statements as they result in
Boolean values of true or false.

The symbols used imply the boolean operators “AND”, “OR” and “NOT”.

202 APPENDIXB. SIMPLEMATH

Operator Description

x & y x AND y
x | y x OR y
!x NOT x
isTRUE(x) Test if x has Boolean value TRUE

Appendix C

Import NHANES sample code

The online NHANES tutorials provide the following sample code to import data
into R.

• Sample code tutorial page page:
– https://wwwn.cdc.gov/nchs/nhanes/tutorials/SampleCode.aspx

• R code to import SAS .XPT transfer data files:
– https://wwwn.cdc.gov/nchs/data/tutorials/file_download_import_
R.R

This code is reproduced below:
Code from page:
https://wwwn.cdc.gov/nchs/data/tutorials/file_download_import_R.R

###
Example code to download/import NHANES data files (SAS transport .XPT files) as a dataset
For R
###

Note to tutorial users: you must update some lines of code (e.g. file paths)
to run this code yourself. Search for comments labeled "TutorialUser"

Include Foreign Package To Read SAS Transport Files
library(foreign)

###
Example 1: import SAS transport file that is saved on your hard drive

203

https://wwwn.cdc.gov/nchs/nhanes/tutorials/SampleCode.aspx
https://wwwn.cdc.gov/nchs/data/tutorials/file_download_import_R.R
https://wwwn.cdc.gov/nchs/data/tutorials/file_download_import_R.R

204 APPENDIXC. IMPORTNHANES SAMPLECODE

###

First, download the NHANES 2015-2016 Demographics file and save it to your hard drive
from: https://wwwn.cdc.gov/nchs/nhanes/search/datapage.aspx?Component=Demographics&CycleBeginYear=2015
You may need to right-click the link to the data file and select "Save target as..."

Create data frame from saved XPT file
TutorialUser: update the file path here
for Windows users, be sure to change the slashes between directories to a forward slash / (as on Mac or Unix)
or to double backslashes \\

DEMO_I <- read.xport("C:\\NHANES\\DATA\\DEMO_I.xpt")
DEMO_I2 <- read.xport("C:/NHANES/DATA/DEMO_I.xpt")

this code with typical Windows single backslashes between directories will throw an error
#DEMO_I <- read.xport("C:\NHANES\DATA\DEMO_I.xpt")

save as an R data frame
TutorialUser: update the file path here to a directory where you want to save the data frame
saveRDS(DEMO_I, file="C:\\NHANES\\DATA\\DEMO_I.rds")

##
Example 2: Download and import the transport file through R
##

Download NHANES 2015-2016 to temporary file
download.file("https://wwwn.cdc.gov/nchs/nhanes/2015-2016/DEMO_I.XPT", tf <- tempfile(), mode="wb")

Create Data Frame From Temporary File
DEMO_I3 <- foreign::read.xport(tf)

save as an R data frame
TutorialUser: update the file path here to a directory where you want to save the data frame
saveRDS(DEMO_I3, file="C:\\NHANES\\DATA\\DEMO_I.rds")

Appendix D

MergeDownloads into aMaster file

Examples for downloading and merging NHANES .XPT data files from the fol-
lowing data:

Documentation links:

• DEMO_I: https://wwwn.cdc.gov/nchs/nhanes/2015-2016/DEMO_I.htm
• BMI_I: https://wwwn.cdc.gov/nchs/nhanes/2015-2016/BMX_I.htm
• PFAS_I: https://wwwn.cdc.gov/nchs/nhanes/2015-2016/PFAS_I.htm
• TCHOL_I: https://wwwn.cdc.gov/nchs/nhanes/2015-2016/TCHOL_I.htm
• ALB_CR_I: https://wwwn.cdc.gov/nchs/nhanes/2015-2016/ALB_CR_I.htm

D.1 Download into R object withNHANES code

Downloaded data is saved in a temporary file in a temporary directory and tf
simply holds the name/path to that data. Example on aMac:

> tf
[1] "/var/folders/zg/9hl9fx_n7b970gcj51t8tkq1xx62d5/T//RtmpL6j3Wp/file5d87195178e"

Download NHANES 2015-2016 to temporary file: DEMO_I
download.file(
"https://wwwn.cdc.gov/nchs/nhanes/2015-2016/DEMO_I.XPT",

205

https://wwwn.cdc.gov/nchs/nhanes/2015-2016/DEMO_I.htm
https://wwwn.cdc.gov/nchs/nhanes/2015-2016/BMX_I.htm
https://wwwn.cdc.gov/nchs/nhanes/2015-2016/PFAS_I.htm
https://wwwn.cdc.gov/nchs/nhanes/2015-2016/TCHOL_I.htm
https://wwwn.cdc.gov/nchs/nhanes/2015-2016/ALB_CR_I.htm

206 APPENDIXD. MERGEDOWNLOADS INTOAMASTER FILE

tf <- tempfile(), mode="wb")
Create Data Frame From Temporary File
DEMO_I <- foreign::read.xport(tf)
##
REPEAT For:
BMX_I
download.file(
"https://wwwn.cdc.gov/nchs/nhanes/2015-2016/BMX_I.XPT",
tf2 <- tempfile(), mode="wb")

BMX_I <- foreign::read.xport(tf2) # TMP file
PFAS_I
download.file(
"https://wwwn.cdc.gov/nchs/nhanes/2015-2016/PFAS_I.XPT",
tf3 <- tempfile(), mode="wb")

PFAS_I <- foreign::read.xport(tf3) # TMP file
TCHOL_I
download.file(
"https://wwwn.cdc.gov/nchs/nhanes/2015-2016/TCHOL_I.XPT",
tf4 <- tempfile(), mode="wb")

TCHOL_I <- foreign::read.xport(tf4) # TMP file
ALB_CR_I
download.file(
"https://wwwn.cdc.gov/nchs/nhanes/2015-2016/ALB_CR_I.XPT",
tf5 <- tempfile(), mode="wb")

ALB_CR_I <- foreign::read.xport(tf5) # TMP file

D.2 Combine files intoMaster

Use merge() function. The SEQN column is common to all and merge() will au-
tomatically identify it. all.x=TRUE will keep all rows and fill non existent data
with NA so that all data are kept.

D.3. SAVE/WRITEMASTER FILE TODISK 207

Master1 <- merge(DEMO_I, BMX_I, all.x=TRUE)
Master2 <- merge(Master1, PFAS_I, all.x=TRUE)
Master3 <- merge(Master2, TCHOL_I, all.x=TRUE)
Master4 <- merge(Master3, ALB_CR_I, all.x=TRUE)

D.3 Save/WriteMaster file to disk

If available use write_csv() function (dplyr package) which is “twice as fast as
write.csv(), and never writes row names. For example to export the data as
.csvwithin the current directory:

library(dplyr)
write_csv(Master4, "Master4.csv")

Base R version:

write.csv(Master4, "Master4.csv")

D.4 Alternate download to R object with haven

Using the haven package the codemay look and feel easier as it only requires one
line per file .

library(haven)
#
DEMO_I <- read_xpt(url(
"https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/DEMO_I.XPT"))

#
BMX_I <- read_xpt(url(
"https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/BMX_I.XPT"))

#
PFAS_I <- read_xpt(url(
"https://wwwn.cdc.gov/nchs/nhanes/2015-2016/PFAS_I.XPT"))

208 APPENDIXD. MERGEDOWNLOADS INTOAMASTER FILE

#
TCHOL_I <- read_xpt(url(
"https://wwwn.cdc.gov/nchs/nhanes/2015-2016/TCHOL_I.XPT"))

#
ALB_CR_I <- read_xpt(url(
"https://wwwn.cdc.gov/nchs/nhanes/2015-2016/ALB_CR_I.XPT"))

D.5 Download, save XPTfiles to hard drive

To just download the .XPT files on your hard drive:

download.file("https://wwwn.cdc.gov/nchs/nhanes/2015-2016/DEMO_I.XPT",
"DEMO_I.XPT")

download.file("https://wwwn.cdc.gov/nchs/nhanes/2015-2016/BMX_I.XPT",
"BMX_I.XPT")

download.file("https://wwwn.cdc.gov/nchs/nhanes/2015-2016/PFAS_I.XPT",
"PFAS_I.XPT")

download.file("https://wwwn.cdc.gov/nchs/nhanes/2015-2016/ALB_CR_I.XPT",
"ALB_CR_I.XPT")

download.file("https://wwwn.cdc.gov/nchs/nhanes/2015-2016/TCHOL_I.XPT",
"TCHOL_I.XPT")

Appendix E

PFAS_I codes

Source: web documentation at https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/
PFAS_I.htm

Table E.1: PFAS_I analysis code

Code Description

SEQN Respondent sequence number
WTSB2YR Subsample B weights
LBXPFDE Perfluorodecanoic acid (ng/mL)
LBDPFDEL Perfluorodecanoic acid Comment Code
LBXPFHS Perfluorohexane sulfonic acid (ng/mL)
LBDPFHSL Perfluorohexane sulfonic acid Comt Code
LBXMPAH 2-(N-methyl-PFOSA)acetic acid (ng/mL)
LBDMPAHL 2-(N-methyl-PFOSA) acetic acid Comt Code
LBXPFNA Perfluorononanoic acid (ng/mL)
LBDPFNAL Perfluorononanoic acid Comment Code
LBXPFUA Perfluoroundecanoic acid (ng/mL)
LBDPFUAL Perfluoroundecanoic acid Comment Code
LBXPFDO Perfluorododecanoic acid (ng/mL)
LBDPFDOL Perfluorododecanoic acid comment

209

https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/PFAS_I.htm
https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/PFAS_I.htm

210 APPENDIXE. PFAS_I CODES

Code Description

LBXNFOA n-perfluorooctanoic acid (ng/mL)
LBDNFOAL n-perfluorooctanoic acid Comment Code
LBXBFOA Br. perfluorooctanoic acid iso (ng/mL)
LBDBFOAL Br. perfluorooctanoic acid iso Comt Code
LBXNFOS n-perfluorooctane sulfonic acid (ng/mL)
LBDNFOSL n-perfluorooctane sulfonic Comt Code
LBXMFOS Sm-PFOS (ng/mL)
LBDMFOSL Sm-PFOS Comment Code

Appendix F

Perfluoroalkyl and polyfluoroalkyl

Table 1. From Buck et al. (2011): Examples of the correct and incorrect (or undesirable)
uses of the proposed nomenclature for perfluoroalkyl and polyfluoroalkyl substances
(PFASs).

211

212 APPENDIX F. PERFLUOROALKYL ANDPOLYFLUOROALKYL

Table 1. Examples of the correct and incorrect (or undesirable) uses of the proposed nomenclature for perfluoroalkyl and polyfluoroalkyl
substances (PFASs)

Example

Example statements

rotcerrocnItcerroC undesirable

COOH

F F F F F F

F

F
F F F F F F F

COOH

F F F F F F

F

F
F H H F F F F

Both are PFASs, within the family of
perfluoroalkyl and polyfluoroalkyl
substances

Both are carboxylic acids

Both are:
– Perfluoroalkyl substances, chemicals, compounds
– Perfluorinated substances, chemicals, compounds
– Polyfluoroalkyl substances
– Polyfluorinated substances
– Fluorocarbons
– Perfluorocarbons
– Fluorinated substances, chemicals, compounds
– Perfluorochemicals
– Perfluorinated chemicals
Both contain fluorocarbons

COOH

F F F F F F

 F

 F
F F F F F F F

All H atoms on all C atoms in the
alkyl chain attached to the carboxylic
acid functional group are replaced
by F
This is a: PFAS, perfluoroalkyl acid
(PFAA), perfluoroalkyl carboxylic
acid (PFCA)
Specifically, this is perfluorooctanoic
acid, CAS number 335-67-1

This is a:
– Perfluorinated substance, chemical, compound
– Fluorinated substance, chemical, compound
– Fluorocarbon
– Perfluorocarbon

COOH

F F F F F F

F

F
F H H F F F F

The alkyl chain attached to the
carboxylic acid functional group is
polyfluorinated
This is a: PFAS, polyfluoroalkyl acid,
polyfluoroalkyl carboxylic acid
Specifically, this is
2,2,3,3,4,4,5,5,7,7,8,8,8- trideca-
fluorooctanoic acid

This is a:
– Polyfluorinated substance, chemical, compound
– Fluorinated substance, chemical, compound
– Perfluorinated substance, chemical, compound
A portion of this compound is perfluorinated

516 Integr Environ Assess Manag 7, 2011—RC Buck et al.

Figure F.1: proposed nomenclature for perfluoroalkyl and polyfluoroalkyl sub-
stances

Appendix G

ggplot2 tutorials online

Note: The “official” ggplot2 book is available online and contains tutorial materi-
als: ggplot2-book.org/)

Table G.1: ggplot2 tutorials online

Name Web site

Quick Introduction to
ggplot2

https://bookdown.org/agrogankaylor/quick-intro-
to-ggplot2/quick-intro-to-ggplot2.html

The Complete ggplot2
Tutorial

http://r-statistics.co/Complete-Ggplot2-Tutorial-
Part1-With-R-Code.html

Introduction to GGPlot2 https://www.datanovia.com/en/lessons/
introduction-to-ggplot2/

Data Visualisation with
ggplot2

https://datacarpentry.org/r-socialsci/04-
ggplot2/index.html

R graphics with ggplot2
workshop notes

http://tutorials.iq.harvard.edu/R/Rgraphics/
Rgraphics.html

Introduction to ggplot2 https://opr.princeton.edu/workshops/Downloads/
2015Jan_ggplot2Koffman.pdf

213

https://ggplot2-book.org/
https://bookdown.org/agrogankaylor/quick-intro-to-ggplot2/quick-intro-to-ggplot2.html
https://bookdown.org/agrogankaylor/quick-intro-to-ggplot2/quick-intro-to-ggplot2.html
http://r-statistics.co/Complete-Ggplot2-Tutorial-Part1-With-R-Code.html
http://r-statistics.co/Complete-Ggplot2-Tutorial-Part1-With-R-Code.html
https://www.datanovia.com/en/lessons/introduction-to-ggplot2/
https://www.datanovia.com/en/lessons/introduction-to-ggplot2/
https://datacarpentry.org/r-socialsci/04-ggplot2/index.html
https://datacarpentry.org/r-socialsci/04-ggplot2/index.html
http://tutorials.iq.harvard.edu/R/Rgraphics/Rgraphics.html
http://tutorials.iq.harvard.edu/R/Rgraphics/Rgraphics.html
https://opr.princeton.edu/workshops/Downloads/2015Jan_ggplot2Koffman.pdf
https://opr.princeton.edu/workshops/Downloads/2015Jan_ggplot2Koffman.pdf

214 APPENDIXG. GGPLOT2 TUTORIALSONLINE

Specialized tutorials on bar charts:

Table G.2: Tutorials on bar graph

Name Web site

Grouped barchart -
ggplot2

https://www.r-graph-gallery.com/48-grouped-
barplot-with-ggplot2

Grouped barplot in R
with error bars

http://environmentalcomputing.net/plotting-with-
ggplot-bar-plots-with-error-bars/

Plotting with ggplot: bar
plots with error bars

http://environmentalcomputing.net/plotting-with-
ggplot-bar-plots-with-error-bars/

Tutorial: Turning a Table
into a Horizontal Bar
Graph using ggplot2

https://rstudio-pubs-static.s3.amazonaws.com/
4305_8df3611f69fa48c2ba6bbca9a8367895.html

8 tips to make better
barplots with ggplot2 in R

https://cmdlinetips.com/2019/10/barplots-with-
ggplot2-in-r/

Grouped, stacked and
percent stacked barplot
in base R

https://www.r-graph-gallery.com/211-basic-
grouped-or-stacked-barplot.htm

https://www.r-graph-gallery.com/48-grouped-barplot-with-ggplot2
https://www.r-graph-gallery.com/48-grouped-barplot-with-ggplot2
http://environmentalcomputing.net/plotting-with-ggplot-bar-plots-with-error-bars/
http://environmentalcomputing.net/plotting-with-ggplot-bar-plots-with-error-bars/
http://environmentalcomputing.net/plotting-with-ggplot-bar-plots-with-error-bars/
http://environmentalcomputing.net/plotting-with-ggplot-bar-plots-with-error-bars/
https://rstudio-pubs-static.s3.amazonaws.com/4305_8df3611f69fa48c2ba6bbca9a8367895.html
https://rstudio-pubs-static.s3.amazonaws.com/4305_8df3611f69fa48c2ba6bbca9a8367895.html
https://cmdlinetips.com/2019/10/barplots-with-ggplot2-in-r/
https://cmdlinetips.com/2019/10/barplots-with-ggplot2-in-r/
https://www.r-graph-gallery.com/211-basic-grouped-or-stacked-barplot.htm
https://www.r-graph-gallery.com/211-basic-grouped-or-stacked-barplot.htm

AppendixH

Rmarkdown resources

A web engine search will provide a lot of possible references for R markdown.
Here are a few that I found useful:

Table H.1: Rmarkdown tutorials online

Name Web site

Getting Used to R,
RStudio, and RMarkdow
Chester Ismay and
Patrick C. Kennedy
2019-11-12

https://ismayc.github.io/rbasics-book/

RMarkdown Quick Tour -
Overview (Video)

https://rmarkdown.rstudio.com/authoring_quick_
tour.html

Introduction to R
Markdown

https:
//rmarkdown.rstudio.com/articles_intro.html

Knitr with RMarkdown https://kbroman.org/knitr_knutshell/pages/
Rmarkdown.html

RMarkdown and
Publishing (R Cookbook,
2nd Edition)

https://rc2e.com/rmarkdown

215

https://ismayc.github.io/rbasics-book/
https://rmarkdown.rstudio.com/authoring_quick_tour.html
https://rmarkdown.rstudio.com/authoring_quick_tour.html
https://rmarkdown.rstudio.com/articles_intro.html
https://rmarkdown.rstudio.com/articles_intro.html
https://kbroman.org/knitr_knutshell/pages/Rmarkdown.html
https://kbroman.org/knitr_knutshell/pages/Rmarkdown.html
https://rc2e.com/rmarkdown

216 APPENDIXH. RMARKDOWNRESOURCES

Name Web site

Writing documents with
RMarkdown

https://monashbioinformaticsplatform.github.io/
2017-11-16-open-science-
training/topics/rmarkdown.html

Rmarkdown document https://mgimond.github.io/ES218/Misc01.html
RMarkdown (for Data
Science)

https://r4ds.had.co.nz/r-markdown.html

Getting started in R
markdown

https://www.statsandr.com/blog/getting-started-
in-r-markdown/

Templates are also available online, for example:

Table H.2: Rmarkdown templates

Name Web site

RMarkdown TEMPLATES https:
//rmarkdown.rstudio.com/gallery.html

https://monashbioinformaticsplatform.github.io/2017-11-16-open-science-training/topics/rmarkdown.html
https://monashbioinformaticsplatform.github.io/2017-11-16-open-science-training/topics/rmarkdown.html
https://monashbioinformaticsplatform.github.io/2017-11-16-open-science-training/topics/rmarkdown.html
https://mgimond.github.io/ES218/Misc01.html
https://r4ds.had.co.nz/r-markdown.html
https://www.statsandr.com/blog/getting-started-in-r-markdown/
https://www.statsandr.com/blog/getting-started-in-r-markdown/
https://rmarkdown.rstudio.com/gallery.html
https://rmarkdown.rstudio.com/gallery.html

Appendix I

The Story of Vector V: an Rmarkdown
example

This is an example of Rmarkdown text that can be cut andpasted in a newRmark-
down document (section 13.2.2) and then knitted into an HTML or other type of
document. This illustrates the use of R code in chunks (shown or hidden) and as
inline commands.

Note: Depending on the format (HTML/PDF) of this document some elements
might have a background color. However, ALL these apparent parts constitute
the .Rmd file.

title: "The story of vector **V**"
output: html_document

`V` learns numbers

Once upon a time there was a vector named `V` that was feeling empty
and was trying to learn numbers from `0` through `9`. One day `V` met
the *magical* combine function `c()` that was able to add the

217

218 APPENDIX I. THE STORYOFVECTORV: ANRMARKDOWNEXAMPLE

numbers ***inside*** `V`, like this:

```{r}
V <- c(1,2,3,4,5,6,7,8,9)
```

`V` was very happy, and `V` was now spending its time enumerating
the numbers: `r V`. Sometimes it would pick one at random: `r sample(V, 1)`
and it was pleased that it was not always the same number coming up.

`V` wonders about itself

Wanting to know itself better `V` asked:

* what is my class? And the answer was: ``r class(V)``
* how long am I? And the answer came as ``r length(V)``

`V` wants more

But then `V` wanted more: it wanted to add these numbersbut not in
the open like this, it wanted to do that "in its head" so it could be
done like this: **`r sum(V)`** (*and the value will be printed
here directly as calculate by `R`.*)

`V` meets the Math Wizard

But how to describe that to *Math Wizards*?
He asked his *fairy* friend *Equation* who gave `V` the *magic* codes:

$$\sum_{n=1}^{9} n = sum(V)$$

which is still **`r sum(V)`**.

219

`V` in the land of vectorization

But it wanted more again... `V` wanted to be 10 times more.
So `V` went on a journey across the land to know what to do.
It was a long and arduous journey, but `V` ended in the
"Land of Vectorization* and there, he was augmented 100 times
to be like this: `r 100*V`. But it was cumbersome to feel
these big numbers and *division* helped one more time to
make it just 1o times smaller to be `r 10*(V)`

`V` and the mental picture

This time it wanted to have a mental "picture" of the numbers
and it could think of 2 ways but it had to keep the `R` code
secret so that it would not be stolen:

```{r echo=FALSE, fig.height=3}
par(mfrow = c(1,2))
plot(V)
boxplot(V)
par(mfrow = c(1,1))
```

Conclusion

It is useful to have friends that help you, and `V` is very grateful
of its magical encounter with `c()` and other friends along the way.

220 APPENDIX I. THE STORYOFVECTORV: ANRMARKDOWNEXAMPLE

About the authors

Jean-Yves Sgro, a senior scientist with years of experience in using and teaching
computer programs, creates, organizes and teaches hands on workshops.

Jean-Yves has been at UW since 1986 after a Master in Physiology and a Ph.D. in
Cellular andMolecular Biology from Joseph Fourier University, Grenoble, France,
and researched at the European Molecular Biology Laboratory (EMBL) where he
already used large computers for sequence analysis.

In Madison, at the Institute for Molecular Virology (IMV) he continued develop-
ing computer expertise in addition to his wet-lab research – 3Dmolecular visual-
ization (virusworld), RNA-folding predictions, sequence and data analysis…

In 1996 he joined the UW Biotechnology Center to better help Campus biologists
analyze and visualize their datawhile continuing research at IMVuntil 2014when
this part-time position was transferred to the Biochemistry Department where
he organizes and teaches hands-on tutorials onmolecular graphics, data analysis
as a support to the department personnel.

221

https://www.univ-grenoble-alpes.fr/english/
https://www.embl.fr/
http://virology.wisc.edu/
http://www.virology.wisc.edu/virusworld
https://www.biotech.wisc.edu/
https://biochem.wisc.edu/

222 APPENDIX I. THE STORYOFVECTORV: ANRMARKDOWNEXAMPLE

Tutorials are available on line fromtheTheBiochemistryComputationalResearch
Facility (BCRF.)

https://bcrf.biochem.wisc.edu/

223

Summary: KristenMalecki is Associate Professor in PopulationHealth Sciences1

and Director and PI of Survey of the Health ofWisconsin (SHOW)2

Her research interests are: Environmental health, epidemiology, survey research
methods, metabolic health and immune function, epigenetics, microbiome and
applied public health practice.

Bio: In June 2022Dr. KristenMalecki has joined theUniversity of Chicago School
ofPublicHealth (Twitter: @uicpublichealth) as thenewdirector of theDivision
of Environmental and Occupational Health Sciences.

Previously, Dr. Kristen Malecki was an Associate Professor in the Department
of Population Health Sciences at the University of Wisconsin-Madison (Twitter:
@uwsmph.) She has a PhD in Environmental Epidemiology and Health Policy and
Masters of Public Health from Johns Hopkins University Bloomberg School of
Public Health. Her previous bio stated*:

Dr. Malecki serves as the co-director for the Survey of the Health of Wisconsin
(SHOW), overseeing survey implementation efforts and ancillary study develop-
ment. She has been a leader in the development and evaluation of indicators
for environmental health risk assessment and policy. Dr. Malecki also works to
bridge appliedpublic healthpracticewith academic research focusingonenviron-
mental health and health disparities using a social determinants of healthmodel.
She recently served as Principal Investigator for theWisconsin Groundwater Co-

1(https://pophealth.wisc.edu/staff/malecki-kristen/)
2https://show.wisc.edu/

https://pophealth.wisc.edu/staff/malecki-kristen/
https://show.wisc.edu/

224 APPENDIX I. THE STORYOFVECTORV: ANRMARKDOWNEXAMPLE

ordinatingCouncil project addressing vulnerability amongprivatewell owners in
Wisconsin. Her current research is also focusedondevelopingmodels to examine
combined chemical (air pollution, water pollution), physical and social stressors
and influence on adult chronic disease, childhood development and obesity. She
is a member of the University of Wisconsin National Institute for Environmen-
tal Health Breast Cancer and the Environment Research Program (coordinating
center). Her transdisciplinary work includes identification of biomarkers of ex-
pression and response using epigenetics and transcriptomics. She also serves
as the Principal Investigator for a number of SHOW ancillary studies involving
community-academic partnerships.

Before coming to the UW she served as the lead epidemiologist for the state Envi-
ronmental Public Health Tracking Program. In these roles she has gained exten-
sive experience in leading andmanagingmulti-disciplinary teams of researchers,
practitioners, and policymakers in development of environmental health surveil-
lance and epidemiologic data for addressing chronic diseases and disparities in
the State ofWisconsin and the nation.

Her teaching interests and experience spans fromenvironmental health to survey
research methods and applied public health practice.

Acknowledgments

I.1 R packages used for the book

R base (R Core Team (2020b)) and other added packages

Book creation: Xie (2020a), Allaire et al. (2020), Xie (2020b).

Book template adapted from rstudio4edu-book:
* https://rstudio4edu.github.io/rstudio4edu-book/

Tidyverse: Wickham et al. (2019)

Data import: R Core Team (2020a), Wickham andMiller (2020)

I.2 Extra Icons used:

I.2.1 Exercise / Homework

Iconmade by Prosymbols from Flaticon

• link: https://www.flaticon.com/free-icon/homework_748646

225

https://rstudio4edu.github.io/rstudio4edu-book/
https://www.flaticon.com/authors/prosymbols
ttps://www.flaticon.com/
https://www.flaticon.com/free-icon/homework_748646

226 APPENDIX I. THE STORYOFVECTORV: ANRMARKDOWNEXAMPLE

I.2.2 Study at home:

Icon made from Icon Fonts is licensed by CC BY 3.0. Recolored version
by JYS.

• link: https://www.onlinewebfonts.com/icon/532202

References may be placed here or may be found on each page when cited depending on the
format (HTML, PDF…) of this document.

http://www.onlinewebfonts.com/icon
https://creativecommons.org/licenses/by/3.0/
https://www.onlinewebfonts.com/icon/532202

Bibliography

Allaire, J., Xie, Y.,McPherson, J., Luraschi, J., Ushey, K., Atkins, A.,Wickham,H.,
Cheng, J., Chang, W., and Iannone, R. (2020). rmarkdown: Dynamic Documents
for R. R package version 2.1.

Beals, K. A. (2008). Nutrition and well-being a to z.

Buck, R. C., Franklin, J., Berger, U., Conder, J. M., Cousins, I. T., de Voogt, P.,
Jensen, A. A., Kannan, K., Mabury, S. A., and van Leeuwen, S. P. J. (2011). Per-
fluoroalkyl and polyfluoroalkyl substances in the environment: Terminology,
classification, and origins. Integrated Environmental Assessment andManagement,
7:513 – 541.

Chambers, J. M., Cleaveland,W. S., Keliner, B., and Tukey, P. A. (1985). Graphical
Methods for Data Analysis. Wadsworth (U.A.).

Ihaka, R. and Gentleman, R. (1996). R: A language for data analysis and graphics.
Journal of Computational and Graphical Statistics, 5(3):299–314.

of the Vice Provost, O. (2013). UW-Madison Strategic Diversity Update. Accessed:
7-29-2020.

Peng, R. D. (2016). R Programming for data science. Leanpub.

R Core Team (2020a). foreign: Read Data Stored by ’Minitab’, ’S’, ’SAS’, ’SPSS’, ’Stata’,
’Systat’, ’Weka’, ’dBase’, ... R package version 0.8-76.

R Core Team (2020b). R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria.

227

228 BIBLIOGRAPHY

Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R.,
Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T. L.,
Miller, E., Bache, S. M., Müller, K., Ooms, J., Robinson, D., Seidel, D. P.,
Spinu, V., Takahashi, K., Vaughan, D., Wilke, C., Woo, K., and Yutani, H.
(2019). Welcome to the tidyverse. Journal of Open Source Software, 4(43):1686.

Wickham,H. andMiller, E. (2020). haven: Import andExport ’SPSS’, ’Stata’ and ’SAS’
Files. R package version 2.3.1.

Wickham, H. and Sievert, C. (2016). ggplot2: elegant graphics for data analysis.
Springer.

Wilkinson, L. (2005). The Grammar of Graphics. Statistics and Computing.
Springer, 2nd edition.

Xie, Y. (2020a). bookdown: AuthoringBooksandTechnicalDocumentswithRMarkdown.
R package version 0.18.

Xie, Y. (2020b). knitr: A General-Purpose Package for Dynamic Report Generation in R.
R package version 1.28.

Index

airquality, 46
albumin, 103
alkyl, 106
analyte, 103
assignment operator

<-, 20
=, 20
R, 20

BMI
distribution, 107

boxplot, 52

cholesterol, 94
HDL, 94
LDL, 94
total, 94
triglycerides, 94

Classic R, 75
code chunk options, 188
code chunks

Rmarkdown, 176
coefficients: linear regression, 110
comma delimited, 76
conditional statement, 39, 133
correlation factor

Pearson, 110

creatinine, 99
adjust. equation, 100
adjustment, 99, 100, 123
ALB_CR, 101
concentration, 100
corrected, 100
equation, 123
excreted, 100
lean body mass, 100
levels, 100
mg/dL, 103
ratio, 103, 104, 123
urine dilution, 99, 100
weight/volume, 103

cylinder, 117

data frame, 32
tibble, 119

data stream
., 121
data=., 121
pipe, 117

data wrangling, 125, 159
datasets

airquality, 46
R, 5
subsetting, 50

229

230 INDEX

decimal point
Europe, 76
USA, 76

dplyr
video course, 126

dynamic document, 169
computer code, 174
narrative, 174
woven, 174

equation
math notation, 190

error bars
sd, 155

Europe, 76

factor, 35, 66
file type

csv, 75
R, 14
Rmd, 175
tab, 76
txt, 76
XPT, 80

functions
abline(), 62, 111
arguments, 25
arrange(), 120, 142
as.factor(), 55
as.integer(), 161
as.numeric(), 72
barplot(), 142
boxplot(), 41
by_group(), 120

cbind(), 30
class(), 26, 27
colnames(), 33
colSums(), 48
cor(), 110
data.frame(), 32
dim(), 37, 48
download.file(), 79
drop_na(), 131, 148
expand.grid(), 36
filter(), 120, 129
formatC(), 139
getwd(), 27
ggarrange(), 68
ggplot(), 64
gl(), 35
head(), 47
help(), 28
hist(), 52
ifelse(), 39, 133
include_graphics(), 194
is.na(), 48
lapply(), 89
length(), 27
levels(), 56, 66
library(), 64
lm(), 61
log(), 86
log10(), 105
ls(), 26
matrix(), 29
mean(), 51
merge(), 96, 113

INDEX 231

mutate(), 120
names(), 32
palette(), 54
par(), 40
plot(), 40, 58
qplot(), 64
rbind(), 30
read.csv(), 76
read.delim(), 76
read.table(), 76
read.xport(), 80
read_xpt(), 80, 159
recode(), 136, 151
rep(), 34
rnorm(), 37
row.names(), 33
rownames(), 33
sample(), 38
sd(), 139
select(), 120, 128
seq(), 34, 92
sequence(), 35
sessionInfo(), 191
set.seed(), 38
setwd(), 27, 61
stack(), 91
str(), 49
summarise(), 139
summarize(), 120
summary(), 49
summrise(), 120
svyglm(), 167
tail(), 47

ungroup(), 141
with(), 51
write.csv(), 114
write.table(), 76
write_csv(), 114

geom
., 121
boxplot, 68
ggplot2, 146
point, 71
smooth, 71

ggplot2
aes, 152
aesthetics, 146
facet_grid(), 149
facets, 146
geom, 146
geom_bar(), 148
geom_bar(aes), 149
geom_col(), 148
geom_errorbar(), 155
labs(), 155
ungroup(), 141

grammar of graphics
ggplot2, 145

graphics
bar plot, 148
barplot, 142
base R, 52
boxplot, 52
boxplot(), 41
error bars, 155

232 INDEX

ggplot(), 64
hist(), 52
par(), 40
plot(), 40, 58
qplot(), 64
scatter plot, 69
setwd(), 62

Grolemund, Garrett, 125
Gruber, John, 171

HadleyWickham
tidyverse, 115

header
YAML, 176
YAML example, 187

histogram, 52
breaks, 88
densities, 88
frequencies, 88

HTML, 172

IF, 39
ifelse()

nested, 133
illustrations

free images, 193
impute, 61
inline code

Rmarkdown, 179

jam, 21
jar, 19

knit
Rmarkdown, 179

knitr
opts_chunk, 188

label, 66
LaTeX, 180
legend

qplot(), 72
LETTERS, 38, 178
level, 35
lierate programming, 169
linear model, 61
linear regression, 61

coefficients, 110
qplot(), 71

loess, 72
loess, 72

magic, 174, 179
magical, 89
Magritte, Rene, 118
markdown, 171

add image, 194
basic syntax, 172
extended syntax, 173
image size, 194
interactive tutorial, 173
markup, 171
Rmarkdown, 173
readability, 172
source, 172
table convert, 195
table generator, 195
tables, 195
web link, 189

INDEX 233

math equation, 190
matrix, 29
MSWord, 172

New York, 46
NHANES

ALB_CR, 101
BMX, 107
combining data, 93
DEMO, 79
demographics, 79, 134
HDL, 94
import data, 77, 80
merging data, 93
PFAS, 78
SEQN, 82
subsetting, 95
TCHOL, 94
TRIGLY, 94
urine sample, 99

objects
LETTERS, 38
R, 24
user defined, 9
vector, 27

odd number columns, 92
omit columns, 86
Ozone, 51, 58

parameters
all.x, 113
breaks, 88
by.x, 102

by.y, 102
graphics, 40
las, 86
legend.position, 71
levels, 66
lwd, 62
mfrow, 40
month.abb, 66
names.arg, 143
ordered, 66
par(), 40
pch, 59
ylim, 84

pch, 59
Pearson

correlation factor, 110
PFAS

hydrophilic, 106
hydrophobic, 106
lipophobic, 106
ng/ml, 103
oleophobic, 106
partitioning, 106
Perfluoroalkyl, 78
Polyfluoroalkyl, 78

pipe, 117
data stream, 117
symbol, 117
Unix, 117

pipeline, 118
plot

characters, 59
geometric shapes, 59

234 INDEX

symbols, 59
programming

literate, 169

qplot
theme(), 67

qplot()
geom, 65
legend.position, 72
linear regression, 71
lm, 72
loess, 72
method, 72
scatter plot, 69

R
.Machine$integer.max, 162
arguments, 25
assignment operator, 20
base, 47, 76
base R, 52
Classic, 19
classic, 75
comments, 14
datasets(), 5
functions, 25
graphics, 52
L:integer coercion, 161
levels, 35
objects, 9, 19, 24
script, 13
workspace, 9

Rmarkdown, 173
code chunk options, 188

code chunks, 176
convert, 179
echo=, 189
eval=, 189
example, 178, 217
graphic size, 194
inline code, 179, 190
knit, 179
magic, 174
math formula, 190
output formats, 180
report template, 185
tables, 195
warning=, 189

R package
dplyr, 120
foreign, 77
ggplot2, 64, 145
ggpubr, 68
haven, 80, 158
knitr, 175
magrittr, 118
survey, 158
tibble, 119
tidyr, 125
tidyverse, 64, 115
tinytex, 180

RAM, 9
ratio

computation, 132
creatinine, 103
mutate(), 132

report template

INDEX 235

Rmarkdown, 185
reproducible research, 169
research

replicable, 170
reproducible, 169

RStudio
2017 conference, 115
console, 12
environment, 12
execute command, 15
files, 13
history, 12
organize data, 13
panes, 12
project, 13
source, 12
working directory, 16
workspace, 12

scatter plot, 58, 69
SEQN

unique individual, 93
Software instal.

Packages, 2
R, 2
RStudio, 2
TinyTex, 180

Star Trek, 119
statistics

generalised linear model, 167
mean, 51
quartile, 50
standard deviation, 139

weights, 157
story

vector V, 179
strawberry, 21
subsetting, 50, 83

[,], 50
$, 51

Swartz, Aaron, 171
Symbols

+, 67
„ 50
., 76, 121
.., 16
/, 28
:, 34
::, 80
<-, 20
?, 28
[], 50
#, 14
$, 51, 66
,̃ 54

tab delimited, 76
tables

markdown, 195
tabular data, 75
template

Rmarkdown, 185
tidyverse

command, 118
dplyr, 120
philosophy, 116

236 INDEX

query, 118
tibble, 119
tidyverse.quiet, 121
Wickham, Hadley, 115

transfer mode
binary, 79

Tribble, 119
triglycerides, 94

USA, 76

variable
as.factor(), 148
categorical, 55
categories, 148
factor, 55
level, 55
levels, 148

vector, 27, 29
vector V

story, 179, 217
vectorisation, 28

web link
markdown, 189

Web links
CRAN, 18
NCHS, 3
NHANES, 3
NIEHS, 18
RStudio, 18

weights
statistics, 157

Wickham, Hadley, 115

working directory
getwd(), 27
RStudio, 16
setwd(), 27

workspace
R, 9
RStudio, 12

YAML
delimitation, 181
header, 176
header example, 187
indentation, 181
language, 181
resources, 183
validator, 183

	Preamble
	Learning goals
	Software used during this tutorial

	Introduction
	Software installation
	Installing R packages
	Datasets: NHANES
	NHANES 2015-2016

	Datasets: included in R

	How R works
	R is a software
	R is a language
	Classic R vs Tidyverse

	Working with R: objects and workspace

	Getting started
	Launch RStudio
	Organize with an RStudio project
	Creating an R script
	Script Editor
	Comments
	Executing commands

	Working directory

	Working with R
	Creating R objects
	Functions and their arguments
	Built-in functions
	list: ls()
	class()
	combine: c()
	length()
	Working directory: getwd() and setwd()

	Getting help
	Vectorisation
	More complex data
	Vectors
	Matrix
	Combining vectors to create a matrix

	Dataframes
	Dataframe manipulation

	Generating data
	Regular sequences
	Repeat and sequence functions:
	Levels: gl() and expand.grid()
	Random numbers

	Conditional statements
	Function ifelse()

	Simple graphics with plot()

	Working with tabular data in R
	Airquality dataset
	Exploring airquality
	Subsetting
	Base R Graphics exploration
	Boxplots
	Scatter plots
	Simple linear regression
	Fancier Graphics exploration
	Boxplots
	Scatter plots

	Importing data
	Importing from local files
	Downloading Nhanes data
	PFAS_I

	Exploring PFAS_I data
	PFAS_I boxplot
	PFAS_I histogram
	Fancier boxplot with qplot

	Merging data files
	Merge() function
	Merging demographics data

	Creatinine adjustment
	Creatinine data
	Downloading, merging PFAS and creatinine

	Analyte measurement units
	Reduced set
	Computing Analyte / Creatinine ratio
	Exposure - Outcome
	Illusions
	qplot version

	Creating a master data file

	Tidyverse: another R Universe
	Magrittr - pipe and pipelines
	Tibble
	dplyr - overview
	Demo 1: all together pipeline

	Intermission: data wrangling
	Part 3 here

	dplyr - data manipulation
	selecting columns
	Filtering rows
	Arrange data
	mutating data
	mutate with conditional statement

	Summarising and grouping data
	Recoding: string replacement
	Getting it all together
	Example 1: by gender
	Example 2: by gender and age
	Base R Bar plot
	ggplot2 versions

	ggplot2
	Tutorials
	ggplot2 using dplyr chapter results
	Barplot with qplot / ggplot
	Error bars and meanTChol

	Using NHANES weights
	Header comments and packages
	Acquiring NHANES data
	Data wrangling: renaming and selecting data
	Renaming columns
	Selecting columns
	Changing variable status to a factor
	Adding the weight information
	Statistics

	Markdown and Reproducible research
	Markdown
	Markdown syntax

	R markdown magic
	Before your start
	How to create an R markdown file
	Adding R code
	Very tiny Rmd file: Inline code

	Other formats
	A word on YAML
	Limits
	Indentation and White space
	Automatic modifications
	Quotes
	Date
	YAML resources

	Report-template
	Overall template format
	YAML example
	General chunk options
	Preamble, Preface and Introduction
	Activating packages
	Live web links
	Embedding graphs
	Inline code
	Math formula
	Addendum

	Report resources
	Illustrations
	Adding and sizing images

	Markdown tables

	Appendix
	The story of R
	Simple math
	Arithmetic operators
	Boolean values
	Rational operators
	Logical operators

	Import NHANES sample code
	Merge Downloads into a Master file
	Download into R object with NHANES code
	Combine files into Master
	Save/Write Master file to disk
	Alternate download to R object with haven
	Download, save XPT files to hard drive

	PFAS_I codes
	Perfluoroalkyl and polyfluoroalkyl
	ggplot2 tutorials online
	Rmarkdown resources
	The Story of Vector V: an R markdown example
	About the authors
	Acknowledgments
	R packages used for the book
	Extra Icons used:
	Exercise / Homework
	Study at home:

