
Tabular data analysis with R and Tidyverse:
Environmental Health

Jean-Yves Sgro, PhD1 Kristen Malecki, PhD, MPH2

Last updated: 12 June, 2024

1Biotech Center, Biochemistry Dept., jsgro@wisc.edu
2Environmental and Occupational Health Sciences, kmalecki@uic.edu

mailto:jsgro@wisc.edu
mailto:kmalecki@uic.edu

Updated 2024 from original work for:
2020 Summer Research Opportunities Program (SROP) for sophomores
University of Wisconsin-Madison
Madison WI 53706 USA

———————–

©2020-2024 Jean-Yves Sgro

CC BY-NC 4.0
This work is licensed under a Creative Commons
“Attribution-NonCommercial-ShareAlike 4.0 In-
ternational” license.
———————–

Cover: Copilot-DALL-E3 anime landscape

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

List of Figures

1.1 Adding packages is like adding gears for a more powerful engine. 3
1.2 NHANES logo. 4

2.1 R objects are containers hodling data, variables, tables, etc. . . . 9
2.2 R holds workspace, objects in RAM. 10

3.1 The 4 quadrants of RStudio interface. 12
3.2 Adding comments to scripts makes them easier to share with oth-

ers, or your future self. 15
3.3 Files Tab shows files and path. 16
3.4 More menu provides easy navigation to working directory. . . . 17

4.1 The assignment operator <- is used to create R objects. 20
4.2 A jar as a metaphor for an R objects. 21
4.3 R objects are conveniently listed within the *Environment* Tab

in RStudio. 22
4.4 A dozen often referred to eggs. 24
4.5 A function typically takes input and provides output. 25
4.6 A function is always written with parenthesis even if they remain

empty. 26
4.7 A function has default arguments. Options and additional argu-

ments may modify its behavior. 27
4.8 Function plot() automatically generated scatter plot. 42
4.9 Split screen plots. 43

3

4 LIST OF FIGURES

4.10 Function plot() automatically generated boxplot. 44

5.1 Dataset ‘airquality‘ is a daily record of daily air quality measure-
ments in New York, May to September 1973. 46

5.2 Default boxplot of airquality dataset. 53
5.3 Comparing the plot of 2 subset formats. 54
5.4 Boxplot of temperature of airquality dataset. 55
5.5 Boxplot of temperature as a function of the month of

airquality dataset. 56
5.6 Boxplot of temperature as a function of the month of

airquality dataset with simple colors. 57
5.7 Using levels to automatically color boxplot. 58
5.8 A scatter plot can show trend. 59
5.9 Adding month levels both as color and number plotted. 60
5.10 Adding month levels both as color and number plotted. 61
5.11 26 pch geometric symbols for plots are numbered 0 to 25. Default

is number 1: open circle. 62
5.12 Adding the simple regression line on the scatter plot. 63
5.13 Plot of of Temperature vs Month. 66
5.14 Better plot of Temperature vs Month. 68
5.15 Scatter plot for Ozone vs Temperature. 71
5.16 Scatter plot for Ozone vs Temperature, linear regression for each separate

month. 73
5.17 Scatter plot for Ozone vs Temperature. Linear regression for all months

together. 74
5.18 Scatter plot for Ozone vs Temperature. Linear regression for all

months. 75

6.1 Perfluorooctanoic acid (PFOA) is used worldwide as an industrial
surfactant in chemical processes and as a material feedstock, and
is a health concern and subject to regulatory action and voluntary
industrial phase-outs. 80

6.2 Finding NHANES 2015-2016 data. 83

LIST OF FIGURES 5

6.3 Summary of 4 attempts . 87
6.4 PFAS_I boxplot with log values for odd columns and rotated labels. 89
6.5 PFAS_I histogram for summed values in column 21 labeled

LBXMFOS. 91
6.6 Creating multiple histograms with one command 92
6.7 PFAS_I boxplot with log values for 4 columns. 95
6.8 PFAS_I boxplot with log values for 10 data columns. 96
6.9 Combining NHANES data into a single file is necessary for de-

tailed analysis. 97
6.10 We have combined NHANES data for each individual from 2 sep-

arate files. 100

7.1 Boxplot and histogram of log10 transformation of PFAS sum data
after creatinine adjustment. 110

7.2 Histogram of BMI values and log10 values. 112
7.3 Histogram of BMI values and log10 values. 113
7.4 Histogram of BMI values and log10 values with added linear re-

gression. 114
7.5 Streching horizontally makes the linear regression appear more

horizontal . 115
7.6 Histogram of BMI log10 values, linear regression (blue) and stan-

dard error (gray.) . 117

8.1 Imagining the data strem as a flow of water in pipes. 122
8.2 The pipe operator is the conduit for the data stream. 122
8.3 Is the Tibble logo a hint on Star Trek? 124
8.4 A pipeline to recreate scatter plot of BMI values as s function of

log10 RATIO creatinine adjustment for the sum of PFAS data col-
umn LBXMFOS. 126

8.5 Data is first injected in the pipeline (Hydroelectric power station,
Huanza, Peru.) . 127

11.1 ggplot2 constructs graphs in layers using a grammar of graphics. 150

6 LIST OF FIGURES

11.2 Bar plot showing total count by age group without gener distinc-
tion. 154

11.3 With facet_grid() the age distribution by gender is on two sepa-
rate graphs. 155

11.4 With facet_grid() the age distribution by gender on two separate
graphs. 156

11.5 Bar plot showng age group distribution by gender. Stack bars is
the default. 157

11.6 Side by side bar of gender count by age group is possible with the
dodge or dodge2 options. 158

11.7 Side by side in each facet. 159

13.1 Reproducible research is more about computer analysis, replica-
ble research is about reproducing research results. 174

13.2 HTML output of Tiny Rmd as knit output. 181
13.3 HTML output for Tinyest R markdown conversion with Knit button. 182

F.1 proposed nomenclature for perfluoroalkyl and polyfluoroalkyl
substances . 216

List of Tables

5.1 Airquality dataset variables . 46
5.2 Details of the airquality dataset readings 47

6.1 Base R read functions . 78
6.2 PFAS_I codes for sum data . 84
6.3 Cholesterol (Total, HDL, LDL & triglycerides) in 2015-2016 NHANES 97

7.1 NHANES 2015-2016 albumin/creatinine data 105
7.2 Codes for albumin and creatinine ALB_CR_I file 106

9.1 Lectures on data wrangling: Tidyverse tidyr and dplyr packages. 130

10.1 The DMDMARTL codes from NHANES DEMO_I 140

12.1 Chosen columns and their description 164

13.1 A course on reproducible research using R 174
13.2 Basic Markdown Syntax . 176

15.1 Free online images and illustrations 197
15.2 Table format conversions inclusing Excel and markdown. 199

B.1 Arithmetic operators and their symbols in R 204
B.2 Boolean values . 205
B.3 Rational operators . 205

E.1 PFAS_I analysis code . 213

7

8 LIST OF TABLES

G.1 ggplot2 tutorials online . 217
G.2 Tutorials on bar graph . 218

H.1 Rmarkdown tutorials online 219
H.2 Rmarkdown templates . 220

Contents

Preamble 17
Learning goals . 18
Software used during this tutorial 18

1 Introduction 1
1.1 Software installation . 2
1.2 Installing R packages . 2
1.3 Datasets: NHANES . 3

1.3.1 NHANES 2015-2016 . 4
1.4 Datasets: included in R . 5

2 How R works 7
2.1 R is a software . 7
2.2 R is a language . 8

2.2.1 Classic R vs Tidyverse 8
2.3 Working with R: objects and workspace 9

3 Getting started 11
3.1 Launch RStudio . 11
3.2 Organize with an RStudio project 13
3.3 Creating an R script . 13

3.3.1 Script Editor . 14
3.3.2 Comments . 14

9

10 CONTENTS

3.3.3 Executing commands 15
3.4 Working directory . 15

4 Working with R 19
4.1 Creating R objects . 19
4.2 Functions and their arguments 25
4.3 Built-in functions . 26

4.3.1 list: ls() . 27
4.3.2 class() . 27
4.3.3 combine: c() . 27
4.3.4 length() . 28
4.3.5 Working directory: getwd() and setwd() 28

4.4 Getting help . 29
4.5 Vectorisation . 29
4.6 More complex data . 30

4.6.1 Vectors . 30
4.6.2 Matrix . 30
4.6.3 Combining vectors to create a matrix 31

4.7 Dataframes . 33
4.7.1 Dataframe manipulation 34

4.8 Generating data . 35
4.8.1 Regular sequences . 35
4.8.2 Repeat and sequence functions: 36
4.8.3 Levels: gl() and expand.grid() 36
4.8.4 Random numbers . 38

4.9 Conditional statements . 40
4.9.1 Function ifelse() . 40

4.10 Simple graphics with plot() . 41

5 Working with tabular data in R 45
5.1 Airquality dataset . 46
5.2 Exploring airquality . 47
5.3 Subsetting . 50

CONTENTS 11

5.4 Base R Graphics exploration 52
5.5 Boxplots . 54
5.6 Scatter plots . 58
5.7 Simple linear regression . 61
5.8 Fancier Graphics exploration 64

5.8.1 Boxplots . 65
5.8.2 Scatter plots . 71

6 Importing data 77
6.1 Importing from local files . 78
6.2 Downloading Nhanes data . 79

6.2.1 PFAS_I . 80
6.3 Exploring PFAS_I data . 83

6.3.1 PFAS_I boxplot . 85
6.3.2 PFAS_I histogram . 90
6.3.3 Fancier boxplot with qplot 93

6.4 Merging data files . 95
6.4.1 Merge() function . 98
6.4.2 Merging demographics data 100

7 Creatinine adjustment 103
7.1 Creatinine data . 105

7.1.1 Downloading, merging PFAS and creatinine 106
7.2 Analyte measurement units . 107
7.3 Reduced set . 108
7.4 Computing Analyte / Creatinine ratio 108
7.5 Exposure - Outcome . 110

7.5.1 Illusions . 115
7.5.2 qplot version . 115

7.6 Creating a master data file . 116

8 Tidyverse: another R Universe 119
8.1 Magrittr - pipe and pipelines 121
8.2 Tibble . 123

12 CONTENTS

8.3 dplyr - overview . 124
8.3.1 Demo 1: all together pipeline 125

9 Intermission: data wrangling 129
9.1 Part 3 here . 130

10 dplyr - data manipulation 131
10.1 Selecting columns . 132
10.2 Filtering rows . 133
10.3 Arrange data . 135
10.4 mutating data . 136

10.4.1 Mutate with conditional statement 137
10.5 Summarising and grouping data 138
10.6 Recoding: string replacement 140
10.7 Getting it all together . 142

10.7.1 Example 1: by gender 142
10.7.2 Example 2: by gender and age 143
10.7.3 Base R Bar plot . 146
10.7.4 ggplot2 versions . 148

11 ggplot2 149
11.1 Tutorials . 151
11.2 ggplot2 using dplyr chapter results 152

11.2.1 Barplot with qplot / ggplot 152
11.2.2 Error bars and meanTChol 158

12 Using NHANES weights 161
12.1 Header comments and packages 162
12.2 Acquiring NHANES data . 163
12.3 Data wrangling: renaming and selecting data 163

12.3.1 Renaming columns . 163
12.3.2 Selecting columns . 165
12.3.3 Changing variable status to a factor 165
12.3.4 Adding the weight information 168

CONTENTS 13

12.3.5 Statistics . 169

13 Markdown and Reproducible research 173
13.1 Markdown . 175

13.1.1 Markdown syntax . 176
13.2 R markdown magic . 177

13.2.1 Before your start . 178
13.2.2 How to create an R markdown file 178
13.2.3 Adding R code . 180
13.2.4 Very tiny Rmd file: Inline code 181

13.3 Other formats . 183
13.4 A word on YAML . 184

13.4.1 Limits . 184
13.4.2 Indentation and White space 184
13.4.3 Automatic modifications 185
13.4.4 Quotes . 186
13.4.5 Date . 186
13.4.6 YAML resources . 186

14 Report-template 189
14.1 Overall template format . 190
14.2 YAML example . 191
14.3 General chunk options . 192
14.4 Preamble, Preface and Introduction 193
14.5 Activating packages . 193
14.6 Live web links . 193
14.7 Embedding graphs . 194
14.8 Inline code . 194
14.9 Math formula . 195
14.10 Addendum . 195

15 Report resources 197
15.1 Illustrations . 197

15.1.1 Adding and sizing images 198

14 CONTENTS

15.2 Markdown tables . 199

Appendix 199

A The story of R 201

B Simple math 203
B.1 Arithmetic operators . 203
B.2 Boolean values . 204
B.3 Rational operators . 205
B.4 Logical operators . 205

C Import NHANES sample code 207

D Merge Downloads into a Master file 209
D.1 Download into R object with NHANES code 209
D.2 Combine files into Master . 210
D.3 Save/Write Master file to disk 211
D.4 Alternate download to R object with haven 211
D.5 Download, save XPT files to hard drive 212

E PFAS_I codes 213

F Perfluoroalkyl and polyfluoroalkyl 215

G ggplot2 tutorials online 217

H Rmarkdown resources 219

I The Story of Vector V: an R markdown example 221

About the authors 225

Acknowledgments 231
I.1 R packages used for the book 231
I.2 Extra Icons used: . 231

CONTENTS 15

I.2.1 Exercise / Homework 231
I.2.2 Study at home: . 232

16 CONTENTS

Preamble

The course book is based on a tutorial course for the 2020 “Summer Research
Opportunities Program” (SROP) for “Underrepresented Racial Minority” (URM)
at the University of Wisconsin-Madison (of the Vice Provost (2013), and Archived)

The main objective of this course is to learn how to analyze tabular datasets of
environmental health data using the software R within the RStudio interface.

This course is also a preparation on reproducible research using dynamic documents
for the analysis of environmental health data from the “Center for Disease Control
and Prevention” (CDC) “National Center for Health Statistics” (NCHS) repository of
“National Health and Nutrition Examination Survey” (NAHANES) datasets. This type
of large tabular data is typical and will provide a number of useful examples.

A special distinction between “classic R” and “Tidyverse” nomenclature will be
highlighted.

This course book is available online in 2 formats on link shown below as a short-
ened URL:

– HTML: https://go.wisc.edu/9zu8ud
– PDF: https://go.wisc.edu/4zzw73

HTML is the primary format for easier Copy/Paste interaction. PDF is eas-
ier to print or download and contains a useful Index.

“Environmental Health is the field of science that studies how the

17

https://web.archive.org/web/20200729215023/https://diversity.wisc.edu/wp-content/uploads/2017/02/Final_SDU.pdf
https://go.wisc.edu/9zu8ud
https://go.wisc.edu/4zzw73

18 CONTENTS

environment influences human health and disease.”
National Institute of Environmental Health Science NIEHS

Data and observations are usually collected in the form of numbers and gathered
into tables representing the data in columns and rows.

Learning goals

During this course we’ll acquire new skills:

- Install and run R and Rstudio software with additional packages
- Understand programming concepts such as variables, conditional statements, data
stream, and pipelines
- Examine, compare and contrast data
- Illustrate analyzes with graphics and plots
- Compose reproducible reports that can be automated

At the end of the course you’ll have acquired sufficient proficiency and indepen-
dence to use the software R within the RStudio graphical interface to analyze
complex environmental datasets in tabular form and create useful and repro-
ducible reports with annotated graphics.

Software used during this tutorial

• R - from The Comprehensive R Archive Network at cran.r-project.org
• RStudio - from rstudio.com

We’ll also install additional “modules” within R called “packages” to add function-
ality and make analysis easier.

https://www.niehs.nih.gov/
https://cran.r-project.org/
https://cran.r-project.org/
https://rstudio.com/

Chapter 1

Introduction

In this class we’ll use the software calledR inside another software calledRStudio
that provides a great graphical and intuitive user interface.

R is the name of the software itself, but also the name of the programming language
that is used within the software.

In this chapter:
• Software installation
• Installing R packages
• NHANES datasets

Just like a cooking recipe is a series of tasks to prepare a dish starting with spe-
cific ingredients, a program is simply a list of instructions to be performed and the
ingredients are the data that are provided within a dataset. The instructions are
written with a programming language, in our case R.

This 5 minutes video R - Coding - 4.11 explains how R is useful in data science.

(Note: HTML viewers will see the video embedded below.)

1https://youtu.be/xp1l7utYFGs

1

https://youtu.be/xp1l7utYFGs

2 CHAPTER 1. INTRODUCTION

1.1 Software installation

Students should install the following two software on their computer. Both R and
RStudio have versions for the three main types of computers. Once installed,
working within the software is the same on all computer platforms.

TASK: Install the software on your computer.

– R - from The Comprehensive R Archive Network at cran.r-project.org
– RStudio - from rstudio.com

Choose the version for your computer and follow installation instructions.

The installation process is rather intuitive. If you need more guidance the follow-
ing step-by-step videos would be useful:

• Installing R and RStudio on Windows 10 (March 20, 2020 - 3min 23sec)

• Installing R and Rstudio on MacOS (Mar 22, 2020 - 4min)

1.2 Installing R packages

Packages are modular additions to the R software that add functionality in the
form of new functions, included datasets, documentation, etc. The standard
repository of R packages The “Comprehensive R Archive Network” (CRAN) will likely
be the most used for environmental health.

One of a “suite” of packages that we’ll use is called Tidyverse and it should
preferably be installed before classes start. While Tidyverse is a suite of
multiple packages, this can be installed just like a single package with that single
name.

The method to add a package is rather simple:

• Copy the following command in theR console: install.packages("tidyverse")

https://cran.r-project.org/
https://cran.r-project.org/
https://rstudio.com/
https://youtu.be/VLWaED9jTiA
https://youtu.be/Y20P3u3c_1c

1.3. DATASETS: NHANES 3

Figure 1.1: Adding packages is like adding gears for a more powerful engine.

• Alternatively use the Packages pane in RStudio to do the installation with
the graphical interface

See also section 3 to get oriented in RStudio.

To install in RStudio follow this video Installing Packages in R Studio (Nov 20,
2012 - 2.52 min) and use the package name Tidyverse instead.

To install in R follow the demonstration in the video How to Install Packages in
R (Aug 9, 2013 - 6:24min)

1.3 Datasets: NHANES

Exercises in this book will be from the National Health and Nutrition Examina-
tion Survey (NHANES)2 a survey research program conducted by the National
Center for Health Statistics (NCHS)3 to assess the health and nutritional status
of adults and children in the United States, and to track changes over time.

An article in FAQS.org (Beals (2008)) details the history of NHANES and how the
collected data is used.

2https://www.cdc.gov/nchs/nhanes/
3https://en.wikipedia.org/wiki/National_Center_for_Health_Statistics

https://youtu.be/u1r5XTqrCTQ
https://youtu.be/3RWb5U3X-T8
https://youtu.be/3RWb5U3X-T8
https://www.cdc.gov/nchs/nhanes/
https://en.wikipedia.org/wiki/National_Center_for_Health_Statistics
https://www.cdc.gov/nchs/nhanes/
https://en.wikipedia.org/wiki/National_Center_for_Health_Statistics

4 CHAPTER 1. INTRODUCTION

Figure 1.2: NHANES logo.

1.3.1 NHANES 2015-2016

NHANES data is collected in datasets and we’ll use datasets from the 2 year col-
lection between 2015 and 2016.

IMPORTANT NOTE:

NHANES datasets are complex and in some cases the data may not be
used as is and may require careful considerations before any conclusion
is reached. Attention should be given to the existence of sub-groups. In
other cases comparisons need to include sub-group weights that are in-
cluded within the dataset.

See chapter 12.

1.4. DATASETS: INCLUDED IN R 5

NHANES file names:

The NHANES data files have succinct names, for example DEMO for demo-
graphics, with an appended suffix that is specific the the series. For exam-
ple, 2015-2016 have the suffix _I and the actual file will have the root name
DEMO_I while the demographics for other series would be different. For
example the 2017-2018 series has suffix _J and the very first series in 1999-
2000 had suffix _A. The pattern is therefore to go to the next letter each
time a new series is published.

Video4: How are the data collected from the participant’s point of view NHANES
Participants (English) 2:22min

See also5: The Latest Data Release and Reports from the National Health and Nu-
trition Examination Survey May 21, 2020 - 57:29 min

1.4 Datasets: included in R

A number of small datasets are included with R during installation. We might
make use of one or more.

There is no further installation required to access the included datasets.

4https://youtu.be/xYBWlSGzVZM
5(https://youtu.be/CXKFSdCXrFI)

https://youtu.be/xYBWlSGzVZM
https://youtu.be/xYBWlSGzVZM
https://youtu.be/CXKFSdCXrFI
https://youtu.be/CXKFSdCXrFI
https://youtu.be/xYBWlSGzVZM
https://youtu.be/CXKFSdCXrFI

6 CHAPTER 1. INTRODUCTION

Chapter 2

How R works

R is both a software and a language. There are just a few things that the user
should be aware of to understand how R works that we can separate between
these 2 aspects.

In this chapter:
• R is a software
• R is a language
• Working with R: objects and workspace

2.1 R is a software

R is a software that:

• should be installed on the computer prior to class (see section 1.1.)
• has a basic set of capabilities that can be enhanced by adding packages

• can be used as a computation engine by other software such as RStudio
• is mostly run by commands entered with the keyboard

7

8 CHAPTER 2. HOW R WORKS

2.2 R is a language

As a language R has capabilities to:

• use mathematical and logical operators

• create and use variables with the assignment operator <-

• recognizes and handles different data types including scalars, vectors
(numerical, character, logical), matrices, data frames, and lists.

• can create plots and graphics

• import data from many file types, from text to databases or from the web

• use built-in functions to carry out a specified task on the data or variables.

• add new collections of R functions, data, and compiled code in a well-
defined format in the form of additional packages.

• provide a comprehensive built-in help system.

2.2.1 Classic R vs Tidyverse

The way R works with commands can be confusing for multiple reasons. State-
ments written in the original R language now called “Classic R” can be sometimes
cumbersome and lacking in clarity. The newer set of pcakges that make up a
“Suite” called Tidyverse has created a new set of language format that is more
modular and often easier to understand.

After reviewing basic “Classic R” we’ll also review Tidyverse methods when work-
ing on datasets later on.

2.3. WORKING WITH R: OBJECTS AND WORKSPACE 9

2.3 Working with R: objects and workspace

The workspace is a working environment where R will store and remember user-
defined objects: vectors, matrices, data frames, lists, functions, variables etc. At
the end of an R session, the user can save an image of the current workspace that
is automatically reloaded the next time R is started. However, it is recommended
to NOT save that image as it may unknowingly affect future sessions.

Except for functions most of the user-defined objects are usually referred to as R
objects as a way to designate them. An R object makes it easy for humans to des-
ignate its content which could be a single numerical value or a large table of data.

Figure 2.1: R objects are containers hodling data, variables, tables, etc.

R tends to keep all data in the computer “random access memory” (RAM) which
used to limit the ability to work on large datasets. However, there are now special
packages and functions that can help with this issue

10 CHAPTER 2. HOW R WORKS

Figure 2.2: R holds workspace, objects in RAM.

Chapter 3

Getting started

We will use RStudio as a global interface to R. We’ll write code, open and save
files, create and visualize plots, keep track of variables and R objects all within
the same RStudio window.

In this chapter:
• Launching Rstudio
• Organize with an Rstudio Project
• Create an R script
• Working directory

3.1 Launch RStudio

TASK: Launch RStudio

To get started launch RStudio on your computer and it will access R auto-
matically.

Both R and RStudio should be installed prior to class (see section 1.1.)

11

12 CHAPTER 3. GETTING STARTED

RStudio will open with 3 sections (called panes) if it is the first time you are using
it:

• the R Console (left),
• Workspace area with Environment/History (top-right), and
• Files/Plots/Packages/Help/Viewer (bottom-right).

When we invoke the Source text editor it will automatically show at the top of the
R Console on the left (see figure 3.1.)

EDITOR WINDOW
WORKSPACE

R Console

FILES,PLOTS, etc

Figure 3.1: The 4 quadrants of RStudio interface.

Note: the relative position and content of each pane can be customized with
the menu cascade:
Tools -> Global Options -> Pane Layout

3.2. ORGANIZE WITH AN RSTUDIO PROJECT 13

3.2 Organize with an RStudio project

It is a good habit to immediately create a project for handling the analysis of new
data and keep everything together. RStudio can create the project directory if it
does not exist, or it can use a directory that has already been set-up.

Having a single top-level directory to move the project to a different drive or into
another directory, or to share it with collaborators. Subdirectories can also be
used to better separate various files and data.

TASK: Create an R project

Start with menu cascade:File > New Project and then choose:

– New Directory
– Empty Project
– Chose a name for the directory, for example learn-R
– Keep the suggestion to create the project in ~/Desktop
– Click on Create Project

From there it would be possible to create sub-directories from within the RStu-
dio interface under the Files tab in the bottom-right pane. Alternatively the sub-
directories could also be created from the familiar computer operating system
interface.

For more complex project it may be useful to create sub-directories to contain
data, scripts and other documents separately. For very complex data more
sub-directories could be added such as an output directory for example.

For now we’ll just keep things under the same project folder.

3.3 Creating an R script

To more easily keep a record we’ll create a new text file with the built-in Editor.

14 CHAPTER 3. GETTING STARTED

TASK: Create script file

Use the following menu cascade to create a new script:

File > New File > R Script

You should now have a blank space on the left hand side as in figure 3.1.

This is where we’ll write R code and the file can then be saved to a plain text file
that can be used again later. When saved the file will have a .R filename exten-
sion.

3.3.1 Script Editor

The editor is a plain text editor (no bolds or italics) but it offers color-coding of
the text depending on what is written (syntax highlighting.)

3.3.2 Comments

While the code we write always makes sense right now it may not be obvious to
others, including ourselves in the future. It is therefore extremely useful to com-
ment the script with information such as giving a tile to sections or plain com-
ments on the goal we are trying to accomplish.

Commenting is accomplished easily: each line with a a hashtag (#) is a comment
and is ignored by R.

For example:

This is a comment line
I can write many comments to make sure I remember what I am doing
The dir() function lists the content of the current directory
dir() # comments can even be added here

3.4. WORKING DIRECTORY 15

Figure 3.2: Adding comments to scripts makes them easier to share with others,
or your future self.

3.3.3 Executing commands

Commands that are written within the script can be executed by using the Ctrl
+ Enter shortcut (on Macs, Cmd + Enter will also work.) This will execute the
command on the current line (indicated by the cursor) or all of the commands in
the currently selected text.

This action will send the selected text to the R console that will run the commands.
It is therefore the same as a Copy/Paste action from the script to the console, but
easier.

3.4 Working directory

We created a new RStudio project earlier and the Files Tab on the bottom right
pane shows the location of files and the “path” to this directory (red circle in figure
3.3.) It is possible to navigate the whole hard drive by using the 2 dots .. next to

16 CHAPTER 3. GETTING STARTED

the “up” green arrow.

Figure 3.3: Files Tab shows files and path.

The More pull-down (3.4) menu makes it easy to return to the working directory
if we got lost navigating the hard drive directory, to choose a new directory, or
even to open the working directory on the computer graphical interface

In a section 4.3 we’ll learn command functions that can let us find or change the
working directory from the R console.

3.4. WORKING DIRECTORY 17

Figure 3.4: More menu provides easy navigation to working directory.

18 CHAPTER 3. GETTING STARTED

Chapter 4

Working with R

This section will be kept brief as there is a large set of introduction material on-
line. For example this online book: “Introduction to R”1. There are indeed a few
principles in “ClassicR” that should be understood such as creatingRobjects (sec-
tion 4) and using basic R functions.

In this chapter:
• Creating used-defined R objects
• Functions and their arguments
• Vectorization
• Data frames tabular format
• Generating data
• Simple graphics with plot()

4.1 Creating R objects

User-created R objects are a method to handle data. It can be thought of as two
actions:

1https://cengel.github.io/R-intro/‘

19

https://cengel.github.io/R-intro/
https://cengel.github.io/R-intro/

20 CHAPTER 4. WORKING WITH R

• Read the data into a container, or jar
• label the jar with the content

Regardless of the size of the data (and perhaps with a little magic?) the container
will adopt the required size to contain all of the data.

The user will then define a name for the container to easily call it back later.

<-
Figure 4.1: The assignment operator <- is used to create R objects.

NOTE

The assignment operator can be replaced with the equal sign = in most
cases but “R purists” prefer the standard <- assignment code.

For a more complex discussion see What are the differences between “=” and
“<-” assignment operators in R?2

Here is a simple illustration: we’ll place the word strawberry into an jar called
jam. In order to do the job we need to use the “assignment” symbol <- that could
be read as “assign…” or “place into” or “read in” etc. Since strawberry is a word

https://stackoverflow.com/questions/1741820/what-are-the-differences-between-and-assignment-operators-in-r
https://stackoverflow.com/questions/1741820/what-are-the-differences-between-and-assignment-operators-in-r

4.1. CREATING R OBJECTS 21

and not a number it has to be placed between quotes.

jam <- "strawberry"

we now have anRobject calledjam that contains the character stringstrawberry.
In the top right panel in RStudio the new object is now listed as shown in figure
4.3.

Figure 4.2: A jar as a metaphor for an R objects.

As we just saw, characters have to be placed within quotes. The following data
types occur often with routine R calculations:

• Numeric
• Integer
• Complex
• Logical
• Character

An R object can contain many types of data. It is easier to understand this with
numbers. Let’s make another object: we’ll assign the number 12 to an object la-
beled dozen. Since 12 is a number we do not use quotes.

dozen <- 12

Since dozen contains and represents the number 12 we can also use mathemat-
ical operators on it. for example we can calculate how much are 2 dozens: the
result is calculated by R using dozen as a variable.

22 CHAPTER 4. WORKING WITH R

Two dozens are:
dozen * 2

[1] 24

The result will be printed on the screen. Since there is only one value, the first
line on the result is [1].

The choice of the label (or name) of the R object should be helpful. Here dozen is
very specific and one would not want to use that label for containing any other
number than 12. For example, a baker’s dozen, which is typically 13 should be
given a suitable variable name such as bakerDozen or baker_dozen.

Figure 4.3: R objects are conveniently listed within the *Environment* Tab in
RStudio.

Obviously since dozen represents a number, it can be used to multiply or divide.

Let’s choose a more generic label. Some people like to add my as part of the cho-
sen name to make sure that they are not inadvertently using the same name as
another program. for example let’s use myNum to represent my number:

myNum <- 12

We can again make use of this object that will replace the value it contains. Here
are some examples with arithmetic operators: add, subtract, multiply, divide. (See

4.1. CREATING R OBJECTS 23

Appendix @ref=(arithmeticoperators).)

add:
myNum + dozen

[1] 24

subtract:
myNum - dozen

[1] 0

multiply:
myNum * dozen

[1] 144

divide:
myNum / dozen

[1] 1

We can also ask if the two objects are “equal”, a question that can only result as
TRUEorFALSE. This comparison requires using relational operators (see Appendix
B.3.) It is noteworthy that such comparison is not limited to objects containing
numbers. It is important to notice that the symbol is made of 2 “touching” equal
signs: == not to be confused with the equal sign itself =.

compare:
myNum == dozen

[1] TRUE

Exercise: calculate a price

The price of one egg is 20 cents.
The price of a dozen is discounted 10%.

24 CHAPTER 4. WORKING WITH R

Figure 4.4: A dozen often referred to eggs.

We want to buy 3 dozen.
How much will this cost?

Can you write the code to easily change the number of dozen purchased?
or if the discount is changed later?

here are some hints

egg <- 0.2 # 20 cents in $
dozen <- 12
discount <- 0.10 # 10% in decimal
myNum <- 3 # how many I want now

Of course this could be calculated with just the numbers. But it makes computing
changes easier if we use variables. Later we can change the variable assignment.

Price without discount: $ 7.2

Discount: $ 0.72

Discounted price = $ 6.48

CAUTION

R objects cannot have a name that start with a number and cannot contain a
dash as it is interpreted as a minus sign.

4.2. FUNCTIONS AND THEIR ARGUMENTS 25

The name of an object must start with a letter (A–Z ora–z) but can include
letters, digits (0–9), dots (.), and underscores (_). R is case sensitive and
discriminates between uppercase and lowercase letters in the names of the
objects, so that a and A can name two distinct objects (even under Win-
dows).

4.2 Functions and their arguments

We just saw examples on how to use R with numbers to do some calculations.
More complicated calculations, and computations, are handled with functions
many of which are installed as part of base R installation. More functions can be
added as we’ll see later when we add R packages.

Functions perform a task to “accomplish something.” The “something” could be
the transformation of data, for example calculating the logarithmic value of a
provided number. Most of the time the function returns and output.

Therefore one can think of a function taking an input and usually providing an
output.

Input Function Output

Figure 4.5: A function typically takes input and provides output.

The input is provided in the form of argument which can be R objects, variables,
numbers, etc. A function will typically have a default behavior that can be modi-
fied with optional arguments.

26 CHAPTER 4. WORKING WITH R

A function is always written as its name followed by parenthesis, even if these
remain empty. For example the function to list all the R object currently within
the workspace is the list function and it written as ls().

ls()

Figure 4.6: A function is always written with parenthesis even if they remain
empty.

Most functions will have a default behavior as determined by default arguments.
For example, the function dir() without any argument by default will show the
content of the current directory.

Additional arguments and options may be added to a function to modify its be-
havior. The input is typically one of the arguments provided. Arguments can be
anything expected by the function and can be numbers, filenames, but also other
objects. The meaning of each required or optional argument may differ depend-
ing on the function and can be looked up in the documentation.

4.3 Built-in functions

An R function is invoked by its name, then followed by parenthesis. Parenthesis
contain mandatory or optional arguments to pass to the function. Parenthesis
are always written even if they remain empty.

4.3. BUILT-IN FUNCTIONS 27

Arguments Function

default

argument(s)

Result

Options

Figure 4.7: A function has default arguments. Options and additional arguments
may modify its behavior.

4.3.1 list: ls()

For example we can now list the R objects that we created above with the function
ls():

ls()

[1] "colorize" "discount" "dozen" "egg" "jam" "myNum"

4.3.2 class()

We can verify the type, or class of these variables with the function class()

class(jam)

[1] "character"

class(myNum)

[1] "numeric"

4.3.3 combine: c()

The combine function is essential in R.

28 CHAPTER 4. WORKING WITH R

For example the following three numeric values are combined into a vector. (More
on vectors below, section 4.6.1.)

c(1, 2, 3)

[1] 1 2 3

Since we did not assign to a user-defined object or a variable name the output is
immediately printed out on the R console and will not be remembered.

Here is the same vector assigned to variable v

v <- c(1, 2, 3)

This time no out put is produced but the data is stored in memory and can be
called back.

However, it is possible to obtain both actions at the same time: placing the as-
signment code within parenthesis:

(v <- c(1, 2, 3))

[1] 1 2 3

4.3.4 length()

It may be useful to know the length of an object:

length(v)

[1] 3

4.3.5 Working directory: getwd() and setwd()

In section 3.4 we saw how to choose a new directory or return to it.

Functiongetwd() will get the working directory and print it on the console.

4.4. GETTING HELP 29

getwd()

Function setwd() will take as argument the absolute or relative path to the new
chosen directory as defined by your operating system. Mac, Unix and Linux users
use the forward slash (/) as a separator. This also works in Windows. However
Windows users need to double back slashes (\\) if they use the backslash (\) as a
separator. See Appendix C for sample code example that is also suited for Win-
dows users.

4.4 Getting help

R provides extensive documentation. Depending on the installation method or
how you access R the results may appear either in plain text within the R console,
an HTML page, or within the Help tab on RStudio, etc.

For example, entering ?c or help(c) at the prompt provides documentation of
the combine function c().

NOTE Within help, ... often means that arguments can be passed along
by other functions. index{Symbols!…}

4.5 Vectorisation

R calculations are “vectorized” in the sense that any calculation can be applied to
all elements of e.g. a vector. For example:

multiply elements of vector v by 10:
v * 10

[1] 10 20 30

divide elements of vector v by 2:
v / 2

30 CHAPTER 4. WORKING WITH R

[1] 0.5 1.0 1.5

This is a very important aspect of R.

4.6 More complex data

There exist other types of more complex data that R can handle, most of them can
be tabular or multidimensional:

• Vector
• Matrix
• List
• Data Frame

Tabular data is a very common form to collect information and most useful in
data analysis.

4.6.1 Vectors

We already created a one-dimensional vector v above containing numeric values.
But vectors can also contain characters or logical data. However, all data in one
vector have to be of the same nature.

For example here is a vector made of characters:

create a vector of character
vc <- c("a", "b","c")

4.6.2 Matrix

A matrix is a collection of data elements arranged in a two-dimensional rectangu-
lar layout. All elements have to be of the same nature, e.g. numeric or character.

The function matrix() can be used to create a new matrix object.

4.6. MORE COMPLEX DATA 31

matrix(c(1,2,3,4,5,6), nrow=2)

[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

However, some more information needs to be given, for example how many rows
should the matrix have, this is done by the nrow= option. Obviously the number
of elements given should be in the number of expected row by columns. The de-
fault values are nrow = 1, ncol = 1 and the default filling method is by column
since the default is byrow = FALSE.

EXERCISE
Try to change some of the defaults. For example change byrow = FALSE
to byrow = TRUE.

Your results:

4.6.3 Combining vectors to create a matrix

Another way to create a matrix is by combining vectors of the same length with the
functions cbind() or rbind() to combine by column or row.

EXERCISE
Try these commands on the vectors v and vc - for example:

32 CHAPTER 4. WORKING WITH R

with v
cvv <- cbind(v,v)

rvv <- rbind(v,v)

cvvvc <- cbind(v,v,v)

with character vector vc
vc2 <- cbind(vc,vc)

with both v and vc
vc3 <- cbind(v,vc)

Your results:

What happened when using both v and vc (hint: class().)

4.7. DATAFRAMES 33

4.7 Dataframes

Dataframes are a type of table that allows each column to contain a different vari-
able type. For example one column can contain characters and another column
can contain numbers.

This type of tabular data is extremely useful in data analysis.

We can use the function data.frame() to construct a dataframe starting with
and combining vectors.

num: a vector if numbers
num <- c(2, 3, 5)

let: a vector or letters
let <- c("aa", "bb", "cc")

tf: a vector or logicals true or false
tf <- c(TRUE, FALSE, TRUE)

df is a data frame
df = data.frame(num, let, tf)

We can inquire about df: the class of the object, its dimensions, the name of the
headers for the columns.

class(df)

[1] "data.frame"

dim(df)

[1] 3 3

names(df)

[1] "num" "let" "tf"

34 CHAPTER 4. WORKING WITH R

4.7.1 Dataframe manipulation

As just as simple demonstration we’ll change the name of the rows.

For now the dataframe looks like this:

df

num let tf
1 2 aa TRUE
2 3 bb FALSE
3 5 cc TRUE

and if we ask the name of each row we get the current list:

rownames(df)

[1] "1" "2" "3"

In R things can change by reassigning new values, so we can indeed change the
row names with the function**rownames() and giving new values. For example:

row.names(df) <- c("row1", "row2", "row3")

print df
df

num let tf
row1 2 aa TRUE
row2 3 bb FALSE
row3 5 cc TRUE

In the same way we could change the column names:

colnames(df) <- c("numbers", "letters", "logical")

Note: functions row.names and rownames exist for rows, but only
colnames exist for columns.

4.8. GENERATING DATA 35

In this final version the data itself is not altered but we changed both the column
and row names:

df

numbers letters logical
row1 2 aa TRUE
row2 3 bb FALSE
row3 5 cc TRUE

4.8 Generating data

There are many ways to generate data from within R as series of numbers, in
sequence or as random numbers. This section is purposefully kept simple.

4.8.1 Regular sequences

The generation of numbers in sequence can be useful to create lists.

The following command will generate an object with 10 elements; a regular se-
quence of integers ranging from 1 to 10, saved wihtin variable x thanks to the
operator :

x <- 1:10
x

[1] 1 2 3 4 5 6 7 8 9 10

Various options can be used to alter the results, for example requesting 11 values,
starting with 3 and ending at 5.

seq(length=11, from=3, to=5)

[1] 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0

36 CHAPTER 4. WORKING WITH R

4.8.2 Repeat and sequence functions:

It may be useful to print a number multiple time. This can be done with therep()
function. For example:

rep(1,15)

[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

The function sequence() creates a series of sequences of integers each ending
by the numbers given as arguments.

sequence(2:5)

[1] 1 2 1 2 3 1 2 3 4 1 2 3 4 5

For clarity here is the result with * separators added:

[1] 1 2 *1 2 3* 1 2 3 4 *1 2 3 4 5*

To understand this output it is useful to also remember that 2:5 means 2, 3, 4, 5
and that the function will apply to each of these digits in turn.

4.8.3 Levels: gl() and expand.grid()

These two functions are very useful for creating tables containing experimental
data.

The function gl() generates “levels”series of “factors” or “categories” as values or
labels. The following example will generate 4 each of 2 levels:

gl(2, 4, labels = c("Control", "Treat"))

[1] Control Control Control Control Treat Treat Treat Treat
Levels: Control Treat

The function expand.grid() creates a data framewith all possible combinations
of vectors or factors given as arguments.

This example

4.8. GENERATING DATA 37

expand.grid(h=c(60,80), w=c(100, 300), sex=c("Male", "Female"))

h w sex
1 60 100 Male
2 80 100 Male
3 60 300 Male
4 80 300 Male
5 60 100 Female
6 80 100 Female
7 60 300 Female
8 80 300 Female

Note: The arguments are rotated as a function of their position in the command.

EXERCISE
Try the following:

expand.grid(sex=c("Male", "Female"), h=c(60,80), w=c(100, 300))

How many lines is the table (not counting the header? (hint: row numbers)

The use of seq() can also be useful in this context.

EXERCISE
Try the following examples.

expand.grid(height = seq(3, 3, 5),
weight = seq(100, 250, 50),
sex = c("Male","Female"))

How many lines is the table (not counting the header? (hint: row numbers)

38 CHAPTER 4. WORKING WITH R

Add one more variable treatment = c("control", "drug")) and see how
much the table expands:

expand.grid(height = seq(3, 3, 5),
weight = seq(100, 250, 50),
sex = c("Male","Female"))

How many lines is the table (not counting the header? (hint: row numbers)

Note: the function dim() can be applied directly as well, for example:

dim(expand.grid(sex=c("Male", "Female"),
h=c(60,80),
w=c(100, 300)))

4.8.4 Random numbers

Most of the statistical functions are available withinR such as Gaussian (Normal),
Poisson, Student t-test etc.

To generate random numbers, the function based on the Normal distribution we
use the function rnorm() (r for random and norm for Normal.) The number of
desired random numbers is given as argument.

Since these are random, the answers are never the same!

EXERCISE
Perform the following command requesting a single random number a
few times (e.g. 5 times) in a row:

rnorm(1)

Do you get the same result every time?

4.8. GENERATING DATA 39

[] Yes [] No

To provide means of reproducible the functionset.seed() can be used to obtain
the same result every time. The seed is a number chosen by the author. Here is
an example selecting three numbers.

set.seed(33); rnorm(3)

[1] -0.13592452 -0.04079697 1.01053901

set.seed(33); rnorm(3)

[1] -0.13592452 -0.04079697 1.01053901

set.seed(33); rnorm(3)

[1] -0.13592452 -0.04079697 1.01053901

However, changing the seed value will change the results:

set.seed(22); rnorm(3)

[1] -0.5121391 2.4851837 1.0078262

Important note3 “[these] Pseudo Random Number Generators because they
are in fact fully algorithmic: given the same seed, you get the same sequence.
And that is a feature and not a bug.”

One Rmethod for choosing letters at random is with the function sample(). The
term LETTERS represents the alphabet and is built-in R.

sample(LETTERS, 5)

[1] "Q" "E" "K" "C" "P"

sample(LETTERS, 5)

40 CHAPTER 4. WORKING WITH R

[1] "T" "P" "H" "Z" "A"

In the same way as before setting a seed will reproduce the same result every time.

set.seed(42); sample(LETTERS, 5)

[1] "Q" "E" "A" "J" "D"

set.seed(42); sample(LETTERS, 5)

[1] "Q" "E" "A" "J" "D"

4.9 Conditional statements

Making choices or decisions are what conditional statements are all about in pro-
gramming.

There are multiple ways of writing a conditional statement in R using different
functions

4.9.1 Function ifelse()

Function ifelse() has the same functionality as the IF statement in Excel and
required 3 arguments:

1. a logical test that is either TRUE or FALSE
2. an answer if the logical test is TRUE
3. and alternate answer if the logical test is FALSE

This is best understood by an example:

Logical test is TRUE: print first option
ifelse(5 > 4, "YES! 5 is greater than 4", "NO! 5 is not smaller than 4")

[1] "YES! 5 is greater than 4"

4.10. SIMPLE GRAPHICS WITH PLOT() 41

Logical test is FALSE: print second option
ifelse(5 <= 4, "YES! 5 is greater than 4", "NO! 5 is not smaller than 4")

[1] "NO! 5 is not smaller than 4"

This will be revisited later in the Tidyverse section (10.4.1.)

Other conditional statements can be learned elsewhere. For example:

• MODULE 4.5 Conditional Statements in R (Utah Sate Univ.)4

• Conditional statements and loops in R5.

4.10 Simple graphics with plot()

We will create a very simple graphic output from generated random numbers:

Create a data vector of 100 random numbers (note: if you choose the same seed
number your final plot will be identical.)

set.seed(9)
data <- rnorm(100)

The plot() function will create a simple scatter plot with circles as the default
symbol.

plot(data)

It is possible to include more than one plot on the same figure/page with the pa-
rameter function modifying the number of rows and columns planned for plot-
ting: par(mfrow=c(1,1)) by default.

As a brief example we’ll replot these data points as points, lines, both, and overlay.
The labels for the axes are rendered blank to make the final layout less cluttered.

4http://learnr.usu.edu/base_r/data_manipulation/4_5_conditionals.php
5https://youtu.be/2evtsnPaoDg

http://learnr.usu.edu/base_r/data_manipulation/4_5_conditionals.php
https://youtu.be/2evtsnPaoDg
http://learnr.usu.edu/base_r/data_manipulation/4_5_conditionals.php
https://youtu.be/2evtsnPaoDg

42 CHAPTER 4. WORKING WITH R

0 20 40 60 80 100

−
2

−
1

0
1

2

Index

da
ta

Figure 4.8: Function plot() automatically generated scatter plot.

par(mfrow = c(2,2))

plot(data, type = "p", main = "points", ylab = "", xlab = "")
plot(data, type = "l", main = "lines", ylab = "", xlab = "")
plot(data, type = "b", main = "both", ylab = "", xlab = "")
plot(data, type = "o", main = "both overplot", ylab = "", xlab = "")

Afterwards it is useful to reset the number of plots per page to 1:

par(mfrow = c(1,1))

Other types of default plots are available. For example a box plot.

4.10. SIMPLE GRAPHICS WITH PLOT() 43

0 20 40 60 80 100

−
2

0
2

points

0 20 40 60 80 100

−
2

0
2

lines

0 20 40 60 80 100

−
2

0
2

both

0 20 40 60 80 100

−
2

0
2

both overplot

Figure 4.9: Split screen plots.

boxplot(data)

R default graphics are useful for exploring the data. However, more modern ad-
ditional packages can be added to make plots more appealing while at the same
time trying to make it easier to create them.

44 CHAPTER 4. WORKING WITH R

−
2

−
1

0
1

2

Figure 4.10: Function plot() automatically generated boxplot.

Chapter 5

Working with tabular data in R

Before working with your own data, it helps to get a sense of how R works with
tabular data from a built-in R data set. We’ll use the data set airquality to do
this exploration. Along the way we’ll learn simple functions or methods that help
explore the data or extract subsets of data.

In this chapter:
• airquality dataset
• Learning base R commands while exploring airquality
• Graphical exploration: boxplot and histogram

NOTE

You can search through the pre-installed data sets with the function
data().

45

46 CHAPTER 5. WORKING WITH TABULAR DATA IN R

5.1 Airquality dataset

The airquality dataset is built-in R so there is nothing to install or prepare, it is
already there as an R object. This data is small compared to environmental data
sets.

We can learn more about the dataset with thehelp(airquality) command and
we’ll learn that it is Daily air quality measurements in New York, May to September 1973
stored within a A data frame with 153 observations on 6 variables. The source of the
data: obtained from the New York State Department of Conservation (ozone data) and the
National Weather Service (meteorological data) and cited by Chambers et al. (1985).

Figure 5.1: Dataset ‘airquality‘ is a daily record of daily air quality measurements
in New York, May to September 1973.

Table 5.1: Airquality dataset variables

Column Name Type Details

[,1] Ozone numeric Ozone (ppb)
[,2] Solar.R numeric Solar R (lang)
[,3] Wind numeric Wind (mph)
[,4] Temp numeric Temperature (degrees F)
[,5] Month numeric Month (1–12)
[,6] Day numeric Day of month (1–31)

The values are daily readings of the air quality values for May 1, 1973 (a Tuesday) to
September 30, 1973.

5.2. EXPLORING AIRQUALITY 47

Table 5.2: Details of the airquality dataset readings

Details: Daily readings

Ozone: Mean ozone in parts per billion from 1300 to 1500 hours at Roosevelt
Island
Solar.R: Solar radiation in Langleys in the frequency band 4000–7700
Angstroms from 0800 to 1200 hours at Central Park
Wind: Average wind speed in miles per hour at 0700 and 1000 hours at
LaGuardia Airport
Temp: Maximum daily temperature in degrees Fahrenheit at La Guardia
Airport.

5.2 Exploring airquality

Base R

This section uses the default R installation. This is sometimes called “base
R” and the code may be referred to as “Classic R” as compared to more mod-
ern methods that we’ll explore later.

We can look at the first and last few lines of that airquality tabular data. We
already know that column names but we can list them with:

colnames(airquality)

[1] "Ozone" "Solar.R" "Wind" "Temp" "Month" "Day"

Using functions head() and tail() we can show the default of 6 lines of data
presented with the column headers:

head(airquality)

48 CHAPTER 5. WORKING WITH TABULAR DATA IN R

Ozone Solar.R Wind Temp Month Day
1 41 190 7.4 67 5 1
2 36 118 8.0 72 5 2
3 12 149 12.6 74 5 3
4 18 313 11.5 62 5 4
5 NA NA 14.3 56 5 5
6 28 NA 14.9 66 5 6

Both commands can be easily modified to select the desired number of lines:

tail(airquality, 4)

Ozone Solar.R Wind Temp Month Day
150 NA 145 13.2 77 9 27
151 14 191 14.3 75 9 28
152 18 131 8.0 76 9 29
153 20 223 11.5 68 9 30

In both cases we see that some data is missing, as represented by NA. It is often
important to know about missing data and many functions provide default and
optional arguments to deal with that.

We can use the function colSums() to easily report the existance and number of
NA for each column:

colSums(is.na(airquality))

Ozone Solar.R Wind Temp Month Day
37 7 0 0 0 0

We can get an idea of the size of the table with the function that prints its dimen-
sions:

dim(airquality)

[1] 153 6

Interestingly the length is the number of columns:

5.2. EXPLORING AIRQUALITY 49

length(airquality)

[1] 6

We can also check the structure of the dataset with:

str(airquality)

'data.frame': 153 obs. of 6 variables:
$ Ozone : int 41 36 12 18 NA 28 23 19 8 NA ...
$ Solar.R: int 190 118 149 313 NA NA 299 99 19 194 ...
$ Wind : num 7.4 8 12.6 11.5 14.3 14.9 8.6 13.8 20.1 8.6 ...
$ Temp : int 67 72 74 62 56 66 65 59 61 69 ...
$ Month : int 5 5 5 5 5 5 5 5 5 5 ...
$ Day : int 1 2 3 4 5 6 7 8 9 10 ...

This provides insight telling us that airquality is a of class data.frame, the
number of observation, the number of variables, and further details about each
variable and the first 10 values in each column.

The summary() function provides a standard statistical output for each column:

summary(airquality)

Ozone Solar.R Wind Temp
Min. : 1.00 Min. : 7.0 Min. : 1.700 Min. :56.00
1st Qu.: 18.00 1st Qu.:115.8 1st Qu.: 7.400 1st Qu.:72.00
Median : 31.50 Median :205.0 Median : 9.700 Median :79.00
Mean : 42.13 Mean :185.9 Mean : 9.958 Mean :77.88
3rd Qu.: 63.25 3rd Qu.:258.8 3rd Qu.:11.500 3rd Qu.:85.00
Max. :168.00 Max. :334.0 Max. :20.700 Max. :97.00
NA's :37 NA's :7

Month Day
Min. :5.000 Min. : 1.0
1st Qu.:6.000 1st Qu.: 8.0

50 CHAPTER 5. WORKING WITH TABULAR DATA IN R

Median :7.000 Median :16.0
Mean :6.993 Mean :15.8
3rd Qu.:8.000 3rd Qu.:23.0
Max. :9.000 Max. :31.0

For each variable (i.e. each column) this provides the minimum and maximum
value, the mean, the median. The quartile values divide the number of data points
into four more or less equal parts, or quarters.

5.3 Subsetting

It is often desirable to access only some portion of the data. Hence there are ways
to select just some columns or rows with the square bracket [] subsetting method.

The first number in the brackets represents the choice of column(s). If there is
a second number after a comma , that number represents the choice for row(s).
Omitting a number means that we want the whole. Here are useful examples
adapted from “Introduction to R”1.

SUBSETTING

Take the time to explore the following commands:

airquality[] # the whole data frame (as a data.frame)
airquality[1, 1] # first element in the first column (as a vector)
airquality[1, 6] # first element in the 6th column (as a vector)
airquality[, 1] # first column in the data frame (as a vector)
airquality[1] # first column in the data frame (as a data.frame)
airquality[1:3, 3] # first three elements in the 3rd column (as a vector)
airquality[3,] # the 3rd row (as a data.frame)

1https://cengel.github.io/R-intro/‘

https://cengel.github.io/R-intro/
https://cengel.github.io/R-intro/

5.3. SUBSETTING 51

airquality[1:6,] # the 1st to 6th rows, equivalent to head(airquality)
airquality[c(1,4),] # rows 1 and 4 only (as a data.frame)
airquality[c(1,4), c(1,3)] # rows 1 and 4 and columns 1 and 3 (as a data.frame)
airquality[, -1] # the whole data frame, excluding the first column
airquality[-c(3:153),] # equivalent to head(airquality, 2)

Here is an example using this method to compute the average temperature (vari-
able Temp) in the 4th column by giving the subset as an argument to the mean()
function:

mean(airquality[, 4])

[1] 77.88235

This notation is useful and does the job. The command could be understood as
the English phrase: “take the mean of all the values located in the 4th column of the
airquality dataset.”

Another subsetting method typical in R is to use the name of the object and the
name of the column separated by a $ sign. For example the column for tempera-
ture would be designated as airquality$Temp. So we could also use that nota-
tion to compute. This time let’s calculate the median:

median(airquality$Temp)

[1] 79

Here is another example calling for the summary of just one column, here the
Ozone column.

summary(airquality$Ozone)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
1.00 18.00 31.50 42.13 63.25 168.00 37

However, it may easier to work with the with() function that allows to simply
use the column name:

52 CHAPTER 5. WORKING WITH TABULAR DATA IN R

with(airquality, mean(Temp))

[1] 77.88235

This command could be spoken in English as “working with the dataset
airquality calculate the average of the values in the column labeled Temp.”

NOTE:

The more modern methods for working with tabular data is to use the
Tidyverse package dplyr as will be explored later.(Section 8.)

5.4 Base R Graphics exploration

R provides useful default plotting mechanisms that are useful to explore the data
the most rapidly. Other packages can later be used to make the plots prettier.

Most R graphics functions will have defaults that help provide the most meaning-
ful plot. For example we can ask for a boxplot:

boxplot(airquality)

The result is alright but it is clear to see that the scale has been chosen to plot
the largest values which are from the Solar.R column, therefore “crushing” the
other, smaller values.

Let’s compare the results of plotting the temperature from column 4 with the two
subsetting methods we just learned. For this we’ll split the graphical page to 1 row
and 2 columns first, and then issue the plotting commands:

par(mfrow = c(1,2))
hist(airquality[,4])
with(airquality, hist(Temp))

5.4. BASE R GRAPHICS EXPLORATION 53

Ozone Solar.R Wind Temp Month Day

0
50

15
0

25
0

Figure 5.2: Default boxplot of airquality dataset.

par(mfrow = c(1,1))

We can note that the title of the plot and the name for the horizontal axis reflect
what is written within the hist() function. This is just a default. There are ways
to change what is written there as detailed in the help.

Now we may rather want to see a boxplot for the temperature.

with(airquality, boxplot(Temp))

This is not super informative, and simply is a larger version of just theTemp values
seen in figure 5.2.

54 CHAPTER 5. WORKING WITH TABULAR DATA IN R

Histogram of airquality[, 4]

airquality[, 4]

F
re

qu
en

cy

60 70 80 90 100

0
5

10
15

20
25

30
35

Histogram of Temp

Temp

F
re

qu
en

cy

60 70 80 90 100
0

5
10

15
20

25
30

35

Figure 5.3: Comparing the plot of 2 subset formats.

5.5 Boxplots

It would be more interesting to plot the temperature separately for each month.
This is possible by adding one more term that specifies that we want to “plot tem-
perature as as function of the month.” This is accomplished with the tilde symbol ~
between the two variables that could be read in plain English with the phrase “as
a function of.”

with(airquality, boxplot(Temp ~ Month))

It would be possible to add a color, choosing from the default 9 colors in R that
are numbered 0-8. 0 is the default white. The next colors have also a name that
can be printed by the palette() function:

5.5. BOXPLOTS 55

60
70

80
90

Figure 5.4: Boxplot of temperature of airquality dataset.

palette()

[1] "black" "#DF536B" "#61D04F" "#2297E6" "#28E2E5" "#CD0BBC" "#F5C710"
[8] "gray62"

Therefore we could color the boxes individually by simply specifying a vector of
number as we learned to do with the combine c() function:

with(airquality, boxplot(Temp ~ Month, col = c(1,2,3,4,5)))

This can help to understand the notion of factor, used for categorical variable
stored it as levels. We can force R to consider a variable as.factor and that will
also list the different levels of that factor.

56 CHAPTER 5. WORKING WITH TABULAR DATA IN R

5 6 7 8 9

60
70

80
90

Month

Te
m

p

Figure 5.5: Boxplot of temperature as a function of the month of airquality
dataset.

with(airquality, as.factor(Month))

[1] 5 6 6 6 6 6 6
[38] 6 7 7 7 7 7 7 7 7 7 7 7 7 7
[75] 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

[112] 8 8 8 8 8 8 8 8 8 8 8 8 9
[149] 9 9 9 9 9
Levels: 5 6 7 8 9

We can the refine the command to ask for just the levels:

levels(with(airquality, as.factor(Month)))

5.5. BOXPLOTS 57

5 6 7 8 9

60
70

80
90

Month

Te
m

p

Figure 5.6: Boxplot of temperature as a function of the month of airquality
dataset with simple colors.

[1] "5" "6" "7" "8" "9"

With this knowledge we could now color the boxplot without having to type spe-
cific colors, or know how many to use by specifying that we want to color by level:

with(airquality,
boxplot(Temp ~ Month,

col = levels(with(airquality,
as.factor(Month)))))

Since the levels are 5, 6, 7, 8, 9 the colors of this plot are different than the plot in
figure 5.6. Of course this command is not easy to understand as it is. It is usual
to create intermediate variables to make the code easier to read. For example we
could create a variable called MyCol to contain the levels.

58 CHAPTER 5. WORKING WITH TABULAR DATA IN R

5 6 7 8 9

60
70

80
90

Month

Te
m

p

Figure 5.7: Using levels to automatically color boxplot.

5.6 Scatter plots

Another type of useful plot is a scatter plot where “points” with an “𝑥” and a “𝑦”
coordinates are plotted. For example we could plot the Ozone levels as a function
of the temperature Temp. This can be written using the with() function:

with(airquality, plot(Ozone ~ Temp))

As we did with the boxplot we could also color each circle as a function of the
month. We could also change the circle with another geometrical form also based
on the month. Typically, to avoid “crowded” commands with too many things
going on, it is best to decompose the options on separate commands.

All we need to do is assign the levels of the months into a separate variable or a
user-defined R object we can call mlev for “month levels” for example:

5.6. SCATTER PLOTS 59

60 70 80 90

0
50

10
0

15
0

Temp

O
zo

ne

Figure 5.8: A scatter plot can show trend.

mlev <- levels(with(airquality, as.factor(Month)))

This command extracts the level values but the mlev is of class character and con-
tains 5, 6, 7, 8, 9 which are just the numbers shown as characters.

We have seen that for the plot() function the color option is called col. For the
shape option it is called pch which stands for print character. We can use those
values to change both the color and the character to be displayed:

with(airquality, plot(Ozone ~ Temp,
pch = mlev,
col = mlev))

To make use the values within mlev to change the geometric shape we can also
force them as a numeric value:

60 CHAPTER 5. WORKING WITH TABULAR DATA IN R

5 6

78
567

8 5
67 89 5

6

7

8

9
5

6
7

8
7

8

9

5
7

9

5
86

7

8
9 5

6

7

8

5

6

7

89
5

7

8

5

6
7

8

9
5

6

9

5

6

7

8

9
56

7

8
9

5

6

7

8

9

5

8
9

5

7

8

9
5
6

7
8

5

6

7 9

5

67
8

9 5

6

7
8

9567

8

9
5

67

8

9 5
6

78
9

5

6
7

8
5 67

60 70 80 90

0
50

10
0

15
0

Temp

O
zo

ne

Figure 5.9: Adding month levels both as color and number plotted.

with(airquality, plot(Ozone ~ Temp,
pch = as.numeric(mlev),
col = mlev))

This will call one of the predefined geometric plot characters built in R.

Plot symbols

There are 26 default geometric symbols inR called withpch=option. Points
can be omitted from the plot using pch = NA. pch 21 to 25 are open sym-
bols that can be filled by a color.

5.7. SIMPLE LINEAR REGRESSION 61

60 70 80 90

0
50

10
0

15
0

Temp

O
zo

ne

Figure 5.10: Adding month levels both as color and number plotted.

5.7 Simple linear regression

The simple function lm() creates a linear model of the data and will omit NAs if any
automatically. For this example it suffices. Other options exists, or computations
can ne one to impute the missing data, for example replacing each NA with the
average (mean) of all values. The result of lm() is a slope and an intercept which
describes a regression line. This can help show a trend, but it is also important
to keep in mind that lm() is a simple model and that other regression methods
exist.

We can compute a simple regression line for the Ozone vs Temp by providing the
values, as in a subset. The most elegant writing is by using the with() function:

model1 <- with(airquality, lm(Ozone ~ Temp))
model1

62 CHAPTER 5. WORKING WITH TABULAR DATA IN R

1 2 3 4 5

0
1

2
3

4
5

6
7

0 1 2 3 4
0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24 25

Figure 5.11: 26 pch geometric symbols for plots are numbered 0 to 25. Default is
number 1: open circle.

Call:
lm(formula = Ozone ~ Temp)

Coefficients:
(Intercept) Temp

-146.995 2.429

We could use str() on the new model1 object to note that it has a complex struc-
ture. Suffice to mention for now that the 2 most important values can also be
called with model1$coefficients

We can now add the regression line to the existing scatter plot with theabline()
function used to add one or more straight lines through the current plot.

5.7. SIMPLE LINEAR REGRESSION 63

with(airquality, plot(Ozone ~ Temp, pch = mlev, col = mlev))
abline(model1, col = "blue", lwd = 3)

5 6

78
567

8 5
67 89 5

6

7

8

9
5

6
7

8
7

8

9

5
7

9

5
86

7

8
9 5

6

7

8

5

6

7

89
5

7

8

5

6
7

8

9
5

6

9

5

6

7

8

9
56

7

8
9

5

6

7

8

9

5

8
9

5

7

8

9
5
6

7
8

5

6

7 9

5

67
8

9 5

6

7
8

9567

8

9
5

67

8

9 5
6

78
9

5

6
7

8
5 67

60 70 80 90

0
50

10
0

15
0

Temp

O
zo

ne

Figure 5.12: Adding the simple regression line on the scatter plot.

64 CHAPTER 5. WORKING WITH TABULAR DATA IN R

Exercise:

We saw that Ozone increases with Temp.

Using a scatter plot and an optional linear model regression can you tell
what is the effect of Wind?

5.8 Fancier Graphics exploration

For this section we’ll call on ggplot2 which is a package included in the
Tidyverse suite. If you need to install this go to section 1.2 and proceed
with the installation.

It may be useful to skip this section and review chapter 11 before spending
too much time if this section proves difficult.

The ggplot2 package is now the “new standard” and while it is useful to know
the graphics commands from R base, it is becoming more and more important to
learn how to use this package.

There is a main command called ggplot() and a somewhat simpler command
called qplot() (with a single q) that resembles a little more the graphics com-
mands we saw earlier. (qplot() is short for “quick plot”.)

Command qplot()has. been deprecated in ggplot2 version 3.4.0. There-
fore the qplot() code below will no longer work in the future. However,
as a transition (June 2024), the ggplot() version will be added… with help
of AI Copilot for faster update!

In possible future editions, the qplot code may be removed.

First we need to activate or load into memory the ggplot2 package. This is ac-

5.8. FANCIER GRAPHICS EXPLORATION 65

complished with the library() function.

library(ggplot2)

If you have an error make sure that you have previously installed Tidyverse or
the single ggplot2 package (see section 1.2.)

5.8.1 Boxplots

Let’s start by trying to reproduce some of the plots with these new commands.
Here is how to create a box plot of the temperature (column Temp) as a function
of the month (column Month.) We also need to specify that we want to use Month
as the coloring factor. We don’t need to specify that we want the levels as qplot
is smart enough to understand that. To obtain a boxplot we ask for a type of plot
“geometry”.

qplot(Month, Temp, data = airquality,
geom = "boxplot", color = as.factor(Month))

The code with ggplot() is similarly coded and creates the same image (only one
is shown.)

In the ggplot() version, the internal aes() function is used to map variables in
the data to visual properties in the plot (aesthetics) such as axes and colors. The
geom_boxplot() function is used to create the boxplot.

ggplot(data = airquality,
aes(x = Month, y = Temp, color = as.factor(Month))) +

geom_boxplot()

Note the order of the variables that are written here in reverse order as compared
to the Base R commands of figure 5.7.

What would happen if the order of the variables Month and Temp were in-
verted here?

66 CHAPTER 5. WORKING WITH TABULAR DATA IN R

60

70

80

90

5 6 7 8 9
Month

Te
m

p

as.factor(Month)

5

6

7

8

9

Figure 5.13: Plot of of Temperature vs Month.

What about the base R version that created figure 5.7?

Some improvement and tweaking are always possible, but for a first plot it is not
bad.

We can improve the plot by transforming some of the data, namely by making
the Month variable a factor rather than just a numeric entry as was shown by the
str() function in section 5.2.

To avoid making changes to the original data, we’ll copy the airquality data
into a new object that we can call aq for simplicity. From that point the original
dataset will not be changed and we’ll only affect the aq object.

5.8. FANCIER GRAPHICS EXPLORATION 67

aq <- airquality

We can now transform the Month column using one of the subsetting methods
we saw previously (section 5.3.) Both aq$Month and aq[, 5] would work. The
following command will overwrite the Month column with its modified status
as a factor. The code q$Month <- factor(aq$Month) would provide the fac-
tor definition. But we can add a modification that will change the “label” of the
factors from numbers to the name of the month in the calendar thanks to the
month.abb parameter that can convert the month number into an abbreviated
English name.

aq$Month <- factor(aq$Month,
levels = 5:9,
labels = month.abb[5:9],
ordered = TRUE)

Let’s see if that worked with some test commands for both aq and airquality:

class
class(airquality$Month)

[1] "integer"

class(aq$Month)

[1] "ordered" "factor"

levels
levels(airquality$Month)

NULL

levels(as.factor(airquality$Month))

[1] "5" "6" "7" "8" "9"

68 CHAPTER 5. WORKING WITH TABULAR DATA IN R

levels(aq$Month)

[1] "May" "Jun" "Jul" "Aug" "Sep"

We can now redo the plot:

qplot(Month, Temp, data = aq, geom = "boxplot", color = Month) +
theme(legend.position = "none")

Theggplot() image is identical, only one is shown. In both casestheme(legend.position
= "none") is used to remove the legend from the plot.

ggplot(data = aq, aes(x = Month, y = Temp, color = Month)) +
geom_boxplot() +
theme(legend.position = "none")

60

70

80

90

May Jun Jul Aug Sep
Month

Te
m

p

Figure 5.14: Better plot of Temperature vs Month.

5.8. FANCIER GRAPHICS EXPLORATION 69

Exercise

Create 4 plots of boxplot on a single page colored by month for the follow-
ing:

– Ozone vs Month
– Solar.R vs Month
– Temp vs Month
– Wind vs Month

Unlike Base R graphics the par(mfrow = c(2,2)) command would not do the
job.

For this we need to rely on a newer package that helps publishggplot style graph-
ics.

Therefore we need to install the package ggpubr which can be done with
command install.packages("ggpubr") (dependent packages will also be
updated.) From this package, the function ggarrange() can be used to list the
plots sequentially, specifying the number of rows and columns on the final page
at the end. We can also optionally add large labels.

library(ggpubr)

ggarrange(
qplot(Month, Ozone, data = aq, geom = "boxplot", color = Month),
qplot(Month, Solar.R, data = aq, geom = "boxplot", color = Month),
qplot(Month, Temp, data = aq, geom = "boxplot", color = Month),
qplot(Month, Wind, data = aq, geom = "boxplot", color = Month),
labels = c("A", "B", "C", "D"),
ncol = 2, nrow = 2)

The ggplot() version is very similarly organized, but the image would be iden-
tical for both.

70 CHAPTER 5. WORKING WITH TABULAR DATA IN R

library(ggpubr)

ggarrange(
ggplot(data = aq, aes(x = Month, y = Ozone, color = Month)) + geom_boxplot(),
ggplot(data = aq, aes(x = Month, y = Solar.R, color = Month)) + geom_boxplot(),
ggplot(data = aq, aes(x = Month, y = Temp, color = Month)) + geom_boxplot(),
ggplot(data = aq, aes(x = Month, y = Wind, color = Month)) + geom_boxplot(),
labels = c("A", "B", "C", "D"),
ncol = 2, nrow = 2)

0

50

100

150

May Jun Jul Aug Sep
Month

O
zo

ne

Month

May

Jun

Jul

Aug

Sep

A

0

100

200

300

May Jun Jul Aug Sep
Month

S
ol

ar
.R

Month

May

Jun

Jul

Aug

Sep

B

60

70

80

90

May Jun Jul Aug Sep
Month

Te
m

p

Month

May

Jun

Jul

Aug

Sep

C

5

10

15

20

May Jun Jul Aug Sep
Month

W
in

d

Month

May

Jun

Jul

Aug

Sep

D

In this example the legend is repetitive and could be omitted from
at least 3 of the plots. This can be accomplished by adding +
theme(legend.position="none") for each of the plots for which we
want to remove the legend as done above previously.

5.8. FANCIER GRAPHICS EXPLORATION 71

5.8.2 Scatter plots

We can also create a scatter plot easily. Remember that we made Month a factor
above (5.8.1.)

qplot(Temp, Ozone, data = aq, col = Month)

The ggplot() version:

ggplot(data = aq, aes(x = Temp, y = Ozone, color = Month)) +
geom_point()

0

50

100

150

60 70 80 90
Temp

O
zo

ne

Month

May

Jun

Jul

Aug

Sep

Figure 5.15: Scatter plot for Ozone vs Temperature.

We can also add a linear regression which will be calculated directly by specifying
the method as "lm". Since Month is a factor the linear regression will be calcu-
lated separately for each month automatically. The SE option is a request to not
print the standard error that would make the plot cluttered.

72 CHAPTER 5. WORKING WITH TABULAR DATA IN R

qplot(x = Temp, y = Ozone, data = aq,
col= Month,
geom = c("point", "smooth"),
method = "lm",
se = FALSE)

ggplot() version: The geom_smooth(method = "lm", se = FALSE) func-
tion is used to add a linear regression line (method = "lm") without the
standard error (se = FALSE).

ggplot(data = aq, aes(x = Temp, y = Ozone, color = Month)) +
geom_point() +
geom_smooth(method = "lm", se = FALSE)

`geom_smooth()` using formula = 'y ~ x'

To compute the linear regression as we did with the classic R plot all we need to
do is to specify that we want to use month as a numeric value. We can also now
turn SE to TRUE if we wish:

qplot(x=Temp, y=Ozone, data=aq,
col=as.numeric(Month),
geom=c("point", "smooth"),
method="lm",
se = T)

ggplot(data = aq, aes(x = Temp, y = Ozone, color = as.numeric(Month))) +
geom_point() +
geom_smooth(method = "lm", se = TRUE)

`geom_smooth()` using formula = 'y ~ x'

The result is that the legend now reports Month as a continous data, which is not
correct. The legend could be removed by adding+ theme(legend.position="none")
as we saw above.

If we do not specify the method i.e. by removing method="lm" we obtain the de-

5.8. FANCIER GRAPHICS EXPLORATION 73

0

50

100

150

60 70 80 90
Temp

O
zo

ne

Month

May

Jun

Jul

Aug

Sep

Figure 5.16: Scatter plot for Ozone vs Temperature, linear regression for each separate
month.

fault, more complex, non linear regression line. In that case the “loess” regression is
used.

qplot(x=Temp, y=Ozone, data=aq,
col=as.numeric(Month),
geom=c("point", "smooth"),
se = T) +

theme(legend.position="none")

ggplot(data = aq, aes(x = Temp, y = Ozone, color = as.numeric(Month))) +
geom_point() +
geom_smooth(se = TRUE) +
theme(legend.position="none")

74 CHAPTER 5. WORKING WITH TABULAR DATA IN R

0

50

100

150

60 70 80 90
Temp

O
zo

ne

as.numeric(Month)

1

2

3

4

5

Figure 5.17: Scatter plot for Ozone vs Temperature. Linear regression for all months to-
gether.

`geom_smooth()` using method = 'loess' and formula = 'y ~ x'

These examples above are to show what is possible withqplot() (quick plot)
and the more fancy ggplot().

Using Internet search is useful to find examples of code that help. For
example the linear regression addition was found on this stack overflow
page: I need to add linear regression trend lines to qplot2.

https://stackoverflow.com/questions/32751126/i-need-to-add-linear-regression-trend-lines-to-qplot-from-ggplot2

5.8. FANCIER GRAPHICS EXPLORATION 75

0

50

100

150

60 70 80 90
Temp

O
zo

ne

Figure 5.18: Scatter plot for Ozone vs Temperature. Linear regression for all
months.

76 CHAPTER 5. WORKING WITH TABULAR DATA IN R

Chapter 6

Importing data

Importing data is rather easy in R but that may also depend on the nature of the
data to be imported and from what format. For environmental studies data are
usually in tabular form such as a spreadsheet or a comma-separated file (.csv.)

In this chapter:
• Importing from local files
• Downloading Nhanes data
• Exploring PFAS_I data
• Merging data files

The way or method used to import the data in R will have fundamental implica-
tions on the class of the object containing the data just read and therefore what
methods can later be used to analyze the data. In Classic R we’ll most likely want
to have the data in the data.frame class as it is the most versatile and useful.

Base R has a series of read functions to import tabular data from plain text files
with columns delimited by: space, tab, comma, with or without a header containing
the column names. With an added package it is also possible to import directly
from a Microsoft Excel spreadsheet format or other foreign formats from various
sources.

77

78 CHAPTER 6. IMPORTING DATA

6.1 Importing from local files

In base R the standard commands to read text files are based on the
read.table() function. The derived functions exist in 2 flavors to ac-
commodate USA and European conventions for decimal point (a comma in
Europe) and comma separator (a semicolon in Europe.) The following table
lists the collection of the base R “read” functions. For more details use the help
command help(read.table) that will display help for all.

Table 6.1: Base R read functions

Function
name

Assumes
header Separator Decimal File type Comment

read.table() No none . .txt USA
read.csv() Yes , . .csv USA
read.csv2() Yes ; , .csv Europe
read.delim() Yes Tab . .txt USA
read.delim2() Yes Tab , .txt Europe

A similar approach is used to write the data out but the *delim() version do
not exist, but can be managed with specifying the tab delimiter within the
write.table() function.

Assuming that you have a file nametest.csv containing these 5 columns of data

c1,c2,c3,c4,c5
1.481,3.478,4.246,3.687,6.051
1.73,5.825,4.526,6.754,0.15
2.556,6.275,2.525,6.368,5.479
2.828,4.77,5.12,3.744,4.01
2.989,4.396,2.078,4.237,4.618
3.122,6.317,5.414,3.551,5.607

The command to read such a file into a user defined object named test would
be:

6.2. DOWNLOADING NHANES DATA 79

Do not run
test <- read.csv("test.csv")

6.2 Downloading Nhanes data

R is a great “statistical software for data analysis” but there are other compet-
ing software in Industry that can even be expensive such as SPSS, STATA, JMP,
Matlab, and SAS.

NHANES data is saved in a SAS transport file (.xpt) created by the SAS XPORT
engine. This is what is available on the NHANES web site. Fortunately they also
provide methods to import this data in R by using the foreign package (see Ap-
pendix C.)

TASK: Install package. foreign.

It is necessary to install this package to be able to follow the code below and
import the NHANES data. You can use install.packages("foreign")
or follow alternate direction in section 1.2.

See also Appendix D.4 for an alternate method using the haven package
instead. See Appendix D.5 for code to download and save .XPT files onto
your computer.

Relax

You may be given a pre-downloaded data set for your homework exer-
cise(s).

However, it is always useful to know where and how to get your own data.
This is the purpose of this section.

https://CRAN.R-project.org/package=foreign

80 CHAPTER 6. IMPORTING DATA

Other options See Appendix D and section 6.4 for more details.

The relevant.XPT files used in this book were combined into a.ziparchive
that can be downloaded: XPTs.zip

The combined “Master4” file can also be downloaded as well as a .csv file
with either:

– Master4.csv
– Master4.csv.zip

6.2.1 PFAS_I

Figure 6.1: Perfluorooctanoic acid (PFOA) is used worldwide as an industrial sur-
factant in chemical processes and as a material feedstock, and is a health concern
and subject to regulatory action and voluntary industrial phase-outs.

As an example we’ll download the file resulting of the blood serum analysis of Per-
fluoroalkyl and Polyfluoroalkyl substances (PFAS_I) used in multiple commercial applica-
tions including surfactants, lubricants, paints, polishes, food packaging and fire-retarding
foams. More information can be read from the documentation page1 (that also
contains a link describing all the details for the laboratory methods used.)

1https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/PFAS_I.htm

https://static-bcrf.biochem.wisc.edu/courses/Tabular-data-analysis-with-R-and-Tidyverse/NHANES-2016-2017/XPTs.zip
https://static-bcrf.biochem.wisc.edu/courses/Tabular-data-analysis-with-R-and-Tidyverse/NHANES-2016-2017/Master4.csv
https://static-bcrf.biochem.wisc.edu/courses/Tabular-data-analysis-with-R-and-Tidyverse/NHANES-2016-2017/Master4.csv.zip
https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/PFAS_I.htm
https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/PFAS_I.htm

6.2. DOWNLOADING NHANES DATA 81

For more information:

– Perfluoroalkyl and Polyfluoroalkyl Substances2 on NIEHS / NIH web
site.

– Perfluoroalkyl and Polyfluoroalkyl Substances in the Environment:
Terminology, Classification, and Origins3 by Buck et al. (2011). (See
their Table 1 in Appendix F.)

The NHANES tutorial R code (Appendix C) is for the demographic data in file
DEMO_I.XPT:

DO NOT RUN
Download NHANES 2015-2016 to temporary file
download.file("https://wwwn.cdc.gov/nchs/nhanes/2015-2016/DEMO_I.XPT",

tf <- tempfile(),
mode="wb")

Create Data Frame From Temporary File
DEMO_I <- foreign::read.xport(tf)

The first command using the download.file() function accomplishes 2 tasks,
it will:

1. download the file from the web link
2. save the file to a temporary file named tf, using the transfer mode coded

w for write and b for binary. (For more info see detail on file open fopen
options 4.)

This “trick” avoids saving the file locally to the hard drive. Should one want to do
that the command could be simplified by replacing tf <- tempfile() with the
name of a file within quotes such as DEMO_I.XPT.

The second command uses theforeignpackage functionread.xport() to read

4http://www.cplusplus.com/reference/cstdio/fopen/

https://www.niehs.nih.gov/health/topics/agents/pfc/index.cfm
https://pubmed.ncbi.nlm.nih.gov/21793199/
https://pubmed.ncbi.nlm.nih.gov/21793199/
http://www.cplusplus.com/reference/cstdio/fopen/

82 CHAPTER 6. IMPORTING DATA

the data into a data frame namedDEMO_I. If we had saved the file to the local drive
we would replace tf with DEMO_I.XPT.

NOTATION: The use of :: notation in foreign::read.xport(tf) tells R
to use the function read.xport() from the foreign package without the
need to use the library() function first. This is common for cases where
we only want to use a function once.

Alternate package: An alternate option to the code provided is using the
package haven and download the file instead with:

DEMO_I <- read_xpt(url(
"https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/DEMO_I.XPT"))

The data can be found on the web site starting at: https://wwwn.cdc.gov/nchs/
nhanes/ContinuousNhanes/ and then:

• Click on “Laboratory data” (figure 6.2)
• Scroll and find the 2015-1016 entry

The entry is specified to be only 376.7 Kb in size.

TASK: Download file PFAS_I.XPT.

The data file direct link is:
https://wwwn.cdc.gov/nchs/nhanes/2015-2016/PFAS_I.XPT

We can download the file as in the above example without the need to save the
.XPT file on the local drive.

Download NHANES PFAS_I 2015-2016 data to temporary file
download.file("https://wwwn.cdc.gov/nchs/nhanes/2015-2016/PFAS_I.XPT",

tf <- tempfile(),
mode="wb")

https://wwwn.cdc.gov/nchs/nhanes/ContinuousNhanes/
https://wwwn.cdc.gov/nchs/nhanes/ContinuousNhanes/
https://wwwn.cdc.gov/nchs/nhanes/2015-2016/PFAS_I.XPT

6.3. EXPLORING PFAS_I DATA 83

Figure 6.2: Finding NHANES 2015-2016 data.

Create Data Frame PFAS_I From Temporary File
PFAS_I <- foreign::read.xport(tf)

class(PFAS_I)

[1] "data.frame"

We now have a data frame named PFAS_I.

6.3 Exploring PFAS_I data

PFAS_I is of classdata.frame. The meaning of the column headers can be found
in the NHANES documentation page https://wwwn.cdc.gov/Nchs/Nhanes/2015-
2016/PFAS_I.htm (also found in Appendix E.)

https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/PFAS_I.htm
https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/PFAS_I.htm

84 CHAPTER 6. IMPORTING DATA

The first and last three codes are in the table shown here.

Table 6.2: PFAS_I codes for sum data

Code Description

SEQN Respondent sequence number
LBXMFOS Sm-PFOS (ng/mL)
LBDMFOSL Sm-PFOS Comment Code

If we read the code information on the web page or on Appendix E we can see that
some columns are “comment” columns. These report the “success” of the analysis
with a value of 0 at or above the detection limit, a value of 1 below lower detection limit
and a dot . for missing values. One more thing to notice is that the text entry
describing these columns is written in multiple ways:

• Comment Code: 5 times
• Comt Code: 4 times
• comment : 1 time

Therefore there are 10 “comment” columns that alternate with data columns.

We can also note that the data columns all contain an X in their name while the
comment columns contain the letter D. The first 2 columns of SEQN and WTSB2YR
are not part of that naming pattern.

REVIEW classic Rmethods:

This is the perfect time to review the classic methods that are built-in R that
we explored with the airquality dataset with functions:

dim(), length(), str(), summary(), colnames(), head() and tail(),
colSums(is.na()). etc.

Since they were already visited those exact commands will not be devel-
oped again but we’ll see how to do some specific manipulations by adding

6.3. EXPLORING PFAS_I DATA 85

optional arguments in some of the commands.

We’ll start by exploring the data graphically.

6.3.1 PFAS_I boxplot

The base R graphics functions are rather smart to make a graph quickly with little
information. We could for example use boxplot(PFAS_I) but we would quickly
note that the first column SEQN would “crush all other columns simply because
the values for this column that represents the”Respondent sequence number”
(the code for each individual) has range 83736 to 93700 as reported by command
summary(PFAS_I[,1]). Therefore as a first approach it would be useful to be
able to plot everything without the first column. This is accomplish with subset-
ting (section 5.3) but using a minus sign to indicate that we want to remove the
designated column. The command to remove the first command would be:

Remove the first columns
boxplot(PFAS_I[, -1])

We just need to remember that within the square brackets the first item repre-
sents rows and the second represents columns. Nothing written means take ev-
erything. In that sense PFAS_I[,] is exactly the same as simply PFAS_I. We
just specify -1 for columns to remove the first one.

However, the next “annoying” thing will be that data from column 2 is now
“crushing” the other boxes So we now want to remove the first 2 columns: SEQN
and WTSB2YR. How do we do that? there are only 2 spots within the square
bracket.

To remove the 2 columns we can take advantage of the combine function c() to
gather the numbers of the columns and add a minus sign before it to specify their
removal. We can thus write:

86 CHAPTER 6. IMPORTING DATA

Remove the first and second columns
boxplot(PFAS_I[, -c(1:2)])

This is still not satisfying as there are a lot of “outliers” i.e. values that extend
beyond the box. And once again the boxes are all “crushed”.

One way to have a better image is to limit the values that are plotted in the ver-
tical (y) axis by using the optional parameter ylim = which requires 2 numbers
specifying a lower and an upper limit, for example from 0 to 10. Note that once
again we need to use the combine c() function, something that is ubiquitous in
R code:

Remove the first and second columns
limit vertical axis with ylim
boxplot(PFAS_I[, -c(1:2)], ylim = c(0,10))

All four attempts can be summarized as:

par(mfrow = c(2,2))
All data
boxplot(PFAS_I)
Remove the first columns
boxplot(PFAS_I[, -1])
Remove the first and second columns
boxplot(PFAS_I[, -c(1:2)])
limit vertical axis with ylim
boxplot(PFAS_I[, -c(1:2)], ylim = c(0,10))

par(mfrow = c(1,1))

This has not been so useful yet, but we are getting closer perhaps!

We noted earlier (section 6.3) that besides the first 2 columns, every other column
was a “comment” column containing only 0, 1, anda few .. Therefore it is not very
useful to include them in the plot. We can further realize that they are all columns
with an odd number, and we can create a list of these numbers from the seq()

6.3. EXPLORING PFAS_I DATA 87

SEQN LBXPFNA LBDBFOAL

0e
+

00
4e

+
05

8e
+

05

WTSB2YR LBXPFUA LBXNFOS

0e
+

00
4e

+
05

8e
+

05

LBXPFDE LBXPFUA LBXNFOS

0
20

40
60

80
10

0

LBXPFDE LBXPFUA LBXNFOS

0
2

4
6

8
10

Figure 6.3: Summary of 4 attempts

88 CHAPTER 6. IMPORTING DATA

function (section 4.8.1).

We want to omit columns 1 and 2, and finish with column 21 since the last col-
umn 22 is a “comment” column. So starting with 3 and stepping by 2 will provide
all odd numbers between 3 and 21.

seq(3,21, by = 2)

[1] 3 5 7 9 11 13 15 17 19 21

We can also remember that using a log() function may give the data a better
spread. If this does not work for the boxplot perhaps it will work for a histogram.
We could also noted in the previous attempts that the labels for the columns are
printed on the horizontal axis, but not all of them due to spacing. We can there-
fore add an additional option which will rotated the bottom labels by 90 degrees
so that all of them can be printed. To find this option one would have to learn
about it in an example, as finding it by help is tricky unless we know where to
look, which would be the list of paramters for graphics found with help(par).
The command is las=2 and that is most likely an abbreviation for label axis style.

The following command combines all of that. We are asking for a boxplot from
PFAS_I, the values will be changed to the natural log, only for columns that are
odd and the label will be rotated on the horizontal axis:

boxplot(log(PFAS_I[, seq(3,21, by = 2)]), las=2)

There are many fancy ways to alter base R graphics, a very detailed example can
be found in this blog5 or this published “excercise” Fixing Axes and Labels in R
Plot Using Basic Options6.

However, most people now are switching to more modern plotting methods for
making the final, fancy or published version. However, it is still very useful to
know how to use R base graphics to explore data as they are usually simpler to
apply at first.

5https://www.tenderisthebyte.com/blog/2019/04/25/rotating-axis-labels-in-r/
6https://rpubs.com/riazakhan94/297778

https://www.tenderisthebyte.com/blog/2019/04/25/rotating-axis-labels-in-r/
https://rpubs.com/riazakhan94/297778
https://rpubs.com/riazakhan94/297778
https://www.tenderisthebyte.com/blog/2019/04/25/rotating-axis-labels-in-r/
https://rpubs.com/riazakhan94/297778

6.3. EXPLORING PFAS_I DATA 89

LB
X

P
F

D
E

LB
X

P
F

H
S

LB
X

M
PA

H

LB
X

P
F

N
A

LB
X

P
F

U
A

LB
X

P
F

D
O

LB
X

N
F

O
A

LB
X

B
F

O
A

LB
X

N
F

O
S

LB
X

M
F

O
S

−2

0

2

4

Figure 6.4: PFAS_I boxplot with log values for odd columns and rotated labels.

90 CHAPTER 6. IMPORTING DATA

6.3.2 PFAS_I histogram

We can perhaps quickly apply what we just learned to making histograms of the
data.

The difference here is that each histogram would need to be a separate graph. So
just replacing boxplot by hist will not work.

Let’s start by looking at just one of them. Column 21 is the sum of all others.
We can test also if it is necessary to use the log() function. We can plot both
original and logged values in one image. We can also use remember and use the
other subset method using the with() function which will make the title of the
plot nicer (see (section 5.4.)

par(mfrow = c(1,2))
original data
hist(PFAS_I[,21])
with(PFAS_I, hist(LBXMFOS))
natural log applied
hist(log(PFAS_I[,21]))
with(PFAS_I, hist(log(LBXMFOS)))

par(mfrow = c(1,1))

NOTE For histograms the options breaks = 25 could be added (possibly
with a different number) to bin into smaller portions and make a finer
plot. By default the histogram will be a “frequencies” version that can be
changed to a “densities” version so that the histogram has a total area of
one. This is done by adding freq = FALSE. See help(hist).

So how do we plot all of the histograms for all columns? This is more complicated
that it appears at first thought. On discussion forums it would be possible to find
answers that have R code on many lines looking like a full program. However,
there is a simple solution but it uses a rather challenging base R function that is
difficult to understand for most people.

6.3. EXPLORING PFAS_I DATA 91

Histogram of LBXMFOS

LBXMFOS

F
re

qu
en

cy

0 5 10 15 20

0
20

0
60

0
10

00

Histogram of log(LBXMFOS)

log(LBXMFOS)

F
re

qu
en

cy

−3 −1 0 1 2 3

0
10

0
20

0
30

0
40

0

Figure 6.5: PFAS_I histogram for summed values in column 21 labeled LBXMFOS.

It would be very difficult to also apply the log() function to the data. Let’s create
a small subset of 4 of the 10 data columns. We’ll store that data in a simple named
object L after which we can verify some properties:

L <- log(PFAS_I[, c(5,9,15,21)])
class(L)

[1] "data.frame"

colnames(PFAS_I[, c(5,9,15,21)])

[1] "LBXPFHS" "LBXPFNA" "LBXNFOA" "LBXMFOS"

Taking into account that we’ll have 4 plots the “magical” command is now simply:
lapply(L, hist).

92 CHAPTER 6. IMPORTING DATA

par(mfrow = c(2,2))
lapply(L, hist)

Histogram of X[[i]]

X[[i]]

F
re

qu
en

cy

−3 −2 −1 0 1 2 3

0
20

0

Histogram of X[[i]]

X[[i]]

F
re

qu
en

cy

−3 −2 −1 0 1 2

0
30

0
70

0

Histogram of X[[i]]

X[[i]]

F
re

qu
en

cy

−3 −2 −1 0 1 2 3

0
30

0

Histogram of X[[i]]

X[[i]]

F
re

qu
en

cy

−3 −2 −1 0 1 2 3

0
20

0

Figure 6.6: Creating multiple histograms with one command

par(mfrow = c(1,1))

Some additional options can be added to change the historgram but the format
is different that when the hist() function is used. In this case the additional
parameters would need to follow hist separated by a comma. For example to
add 2 parameters:
lapply(L, hist, breaks=25, freq = FALSE).

Each title “Histogram of X[[i]]” could be changed to the same title for all with
e.g. main = "Histogram" or compltely suppressed with main = "". But to
provide the name of the column either in the title or on the axis would require
even more sophisticated commands.

6.3. EXPLORING PFAS_I DATA 93

ADVANCED The solution for this calls on the lapply() function that can
be difficult to understand. This whole family of functions is described in
details on the guru99 web site:
https://www.guru99.com/r-apply-sapply-tapply.html

These functions can be very useful and are found as suggestions on forums.

6.3.3 Fancier boxplot with qplot

This section uses ggplot2 which is a package included in the Tidyverse
suite. If you need to install this go to section 1.2 and proceed with the in-
stallation.

This section is here to illustrate another way to create the same or similar
plots as we did with base R. It may be confusing at first, in which case this
section can be skipped to better come back later. Perhaps after learning
more from links in chapter 11.

Most ggplot examples online assume that some of the columns of the data can be
used to plot against other columns as we did for the airquality plots using the
easier qplot() (section 5.8.)

The data we have in PFAS_I are all number data and we’d like to plot them all as
we did with the base R graphic function boxplot().

This section with a quick solution is here as it is difficult to find examples that
match the data style we have here i.e. many columns that need to be plotted. The
solution involves the stack() function that is part of the utils “utilities library”
for data frames.

This solution was found on this forum page: Building a box plot from all columns

https://www.guru99.com/r-apply-sapply-tapply.html
https://www.guru99.com/r-apply-sapply-tapply.html
https://stackoverflow.com/questions/27109347/building-a-box-plot-from-all-columns-of-data-frame-with-column-names-on-x-in-ggp

94 CHAPTER 6. IMPORTING DATA

of data frame with column names on x in ggplot27.

To understand what it does we can simply look at its effect on the L object:

head(stack(L))

values ind
1 -0.5108256 LBXPFHS
2 0.3364722 LBXPFHS
3 1.5892352 LBXPFHS
4 0.1823216 LBXPFHS
5 -1.6094379 LBXPFHS
6 -0.6931472 LBXPFHS

Note: this could be written head(utils::stack(L)) in case of ambiguity with
other commands.

The effect is to create a simpler but longer format as long as the number of
columns multiplied by the number of rows. For L this would be 2170 * 4 = 8680.
The column names for this format is always values and ind (independent
variable) which are names to be reported in qplot():

library(ggplot2)
qplot(ind, values, data = stack(L), geom = "boxplot")

Warning: `qplot()` was deprecated in ggplot2 3.4.0.
This warning is displayed once every 8 hours.
Call `lifecycle::last_lifecycle_warnings()` to see where this
warning was generated.

Warning: Removed 708 rows containing non-finite outside the scale range
(`stat_boxplot()`).

We’ll see later how this works, but the ggplot version for all 10 odd-numbered
columns could be written as:

7https://stackoverflow.com/questions/27109347/building-a-box-plot-from-all-columns-of-
data-frame-with-column-names-on-x-in-ggp

https://stackoverflow.com/questions/27109347/building-a-box-plot-from-all-columns-of-data-frame-with-column-names-on-x-in-ggp
https://stackoverflow.com/questions/27109347/building-a-box-plot-from-all-columns-of-data-frame-with-column-names-on-x-in-ggp
https://stackoverflow.com/questions/27109347/building-a-box-plot-from-all-columns-of-data-frame-with-column-names-on-x-in-ggp
https://stackoverflow.com/questions/27109347/building-a-box-plot-from-all-columns-of-data-frame-with-column-names-on-x-in-ggp

6.4. MERGING DATA FILES 95

−2

−1

0

1

2

3

LBXPFHS LBXPFNA LBXNFOA LBXMFOS
ind

va
lu

es

Figure 6.7: PFAS_I boxplot with log values for 4 columns.

library(ggplot2)
ggplot(stack(log(PFAS_I[, seq(3,21, by = 2)])),

aes(x = ind, y = values)) +
geom_boxplot()

Warning: Removed 1770 rows containing non-finite outside the scale range
(`stat_boxplot()`).

6.4 Merging data files

NHANES data are split into multiple files to provide flexibility and modularity in
the choice of data. This makes the data easier to handle in small portions rather
than a huge, single data file. On the other hand it is often necessary to merge

96 CHAPTER 6. IMPORTING DATA

−2.5

0.0

2.5

5.0

LBXPFDELBXPFHSLBXMPAHLBXPFNALBXPFUALBXPFDOLBXNFOALBXBFOALBXNFOSLBXMFOS
ind

va
lu

es

Figure 6.8: PFAS_I boxplot with log values for 10 data columns.

one or more data file in order to obtain all of the data required for an analysis so
that all of the data for an individual scattered among multiple files be found on a
single row in the new, combined data file.

All that is required and necessary to merge data is at least a single column with
the same name. All NHANES data pertinent to individuals (excluding special
files with pooled data) start with the SEQN column that identify individuals with
a unique number.

PFAS may disrupt lipid regulation and gathering data that have both PFAS and
cholesterol or triglyceride data would help in a study. As an example we’ll merge
the PFAS_I file with another file containing cholesterol data. There are 3 files
containing cholesterol data for 2015-2016, separated by type.

6.4. MERGING DATA FILES 97

Figure 6.9: Combining NHANES data into a single file is necessary for detailed
analysis.

Table 6.3: Cholesterol (Total, HDL, LDL & triglycerides) in
2015-2016 NHANES

Data File Name Doc File Data File
Date
Published

Cholesterol - High-Density
Lipoprotein (HDL)

HDL_I Doc HDL_I Data
[XPT - 189.2
KB]

September
2017

Cholesterol - Low - Density
Lipoprotein (LDL) &
Triglycerides

TRIGLY_I
Doc

TRIGLY_I
Data [XPT -
151.2 KB]

January 2019

Cholesterol - Total TCHOL_I
Doc

TCHOL_I
Data [XPT -
189.2 KB]

September
2017

https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/HDL_I.htm
https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/HDL_I.XPT
https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/TRIGLY_I.htm
https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/TRIGLY_I.htm
https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/TRIGLY_I.XPT
https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/TRIGLY_I.XPT
https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/TCHOL_I.htm
https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/TCHOL_I.htm
https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/TCHOL_I.XPT
https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/TCHOL_I.XPT

98 CHAPTER 6. IMPORTING DATA

The number of observation within each file is different with 8021 (765 missing)
for both total cholesterol and HDL files, and only 3191 (468 missing) for LDL +
Triglyceride. The latter is probably due to NHANES method to use subsets of a
population as a cost saving method.

The PFAS_I data contains 2170 entries with 177missing. During the merging of
the data, only rows that have a corresponding SEQN entry will be saved.

For simplicity we’ll use the total cholesterol data. It contains only three columns
but none of them are “comment” columns:

• SEQN - Respondent sequence number
• LBXTC - Total Cholesterol (mg/dL)
• LBDTCSI - Total Cholesterol (mmol/L)

The LBDTCSI variable was derived from LBXTC: The total cholesterol in mg/dL
(LBXTC) was converted to mmol/L (LBDTCSI) by multiplying by 0.02586.

The file has to be downloaded into a new user-defined R object as we did with the
PFAS data:

Download NHANES TCHOL_I 2015-2016 data to temporary file
download.file("https://wwwn.cdc.gov/nchs/nhanes/2015-2016/TCHOL_I.XPT",

tf <- tempfile(),
mode="wb")

Create Data Frame PFAS_I From Temporary File
TCHOL_I <- foreign::read.xport(tf)

class(TCHOL_I)

[1] "data.frame"

6.4.1 Merge() function

The merge() function has many optional parameters that permit variations of
the merging. Details on all options for this function are available ashelp(merge)

6.4. MERGING DATA FILES 99

or simply ?merge.

All we want for now is specify a common column, in our case SEQN and just keep
the entries that exist for both data files. Therefore the total number of entries
cannot be larger than that of PFAS_I, that is 2170.

The specification of the chosen columns is done with the by.x and by.y options.
In our case the chosen name will be the same. But if by chance the name was
different in the 2 files, specifying the name of the column in this way would still
work.

So, let’s combine the 2 files:

Merging PFAS and total cholesterol TCHOL data frames
M1 <- merge(PFAS_I, TCHOL_I, by.x = "SEQN", by.y = "SEQN")

class(M1)

[1] "data.frame"

dim(M1)

[1] 2170 24

Since TCHOL_I is the second argument (y in documention) its columns are added
at the end of PFAS_I. Inverting the arguments would place theTCHOL_I columns
at the beginning. However, in all cases the SEQN column remains the first col-
umn.

We can check the name of just a few columns, for example with:

colnames(M1)[c(1,20:24)]

[1] "SEQN" "LBDNFOSL" "LBXMFOS" "LBDMFOSL" "LBXTC" "LBDTCSI"

The last 2 names are indeed the code names found in the documentation for
TCHOL_I.

We now have merged 2 data files using the unique number for each individual.

100 CHAPTER 6. IMPORTING DATA

The process would be the same to add more data, for example adding the other
cholesterol data files for HDL and LDL+Triglycerides. But this can be done as an
exercise if it proves useful.

Figure 6.10: We have combined NHANES data for each individual from 2 sepa-
rate files.

6.4.2 Merging demographics data

Most studies are set to compare and analyze data for different population. There-
fore adding the “demographics” data file would be useful.

Study:
Merge your data with the demographics file if your study requires it.

The procedure would be exactly the same using the merge() function
through the common SEQN column for individuals.

The code to download the demographics data was the example we saw ear-
lier in section 6.2.1.

6.4. MERGING DATA FILES 101

If you are struggling with downloading data file or creating a master file
with multiple merges check code in Appendix D (using NHANES code with
foreign package) and D.4 (using haven package.)

102 CHAPTER 6. IMPORTING DATA

Chapter 7

Creatinine adjustment

Many of the NHANES samples are derived from urine sample analysis. In order
to compensate for most variations between individuals it is often necessary to
proceed to an adjustment with the level of creatinine a metabolite that has a rate
of excretion rather constant and can serve an an indicator of urine dilution.

In this chapter:
• Creatinine adjustment rationale
• Download and explore creatinine data
• Converting weight/volume units
• Merging and reducing data
• Computing and saving creatinine adjustment

An older NHANES document had information about this process:

103

104 CHAPTER 7. CREATININE ADJUSTMENT

The concentrations of environmental chemicals per whole weight of
serum are also on the laboratory file and can be used for comparison with
other published studies that have investigated these chemicals.
The current NHANES urine collection protocol provides ‘spot’ urine sam-
ples because these are collected at different times of the day (depending
on the examination session) and only one specimen is collected from each
survey participant. The laboratory measures of environmental chemicals
in urine are provided on the data files as concentrations per volume of
urine. Each data set for environmental chemicals measured in urine, also
includes a variable for urinary creatinine concentration.
Urine dilution may vary markedly from person to person, time to time,
and because of other conditions, including fluid consumption, physi-
cal workload, and health. Creatinine is produced as a result of muscle
metabolic processes, and excreted from the body at a fairly constant rate
(though extreme diets may affect urine creatinine levels). The effect of
urinary dilution can be accounted for by determining the amount of the
environmental chemical per amount of urinary creatinine in a given vol-
ume of urine.
The equation for creatinine adjustment is:
Analyte concentration per gram of creatinine =
Concentration of environmental chemical in urine (wt/vol)
——
Concentration of creatinine in urine (wt/vol)

WARNING Creatinine is related to lean body mass and renal function
of individuals, and varies by age, gender, and race/ethnicity group.
It is recommended that one compare the creatinine-corrected environ-
mental chemical concentrations among individuals of similar demo-
graphic groups rather than the whole population because urinary crea-
tinine levels differ according to age, gender, and race/ethnicity. Alterna-
tively, multiple regression analyses can be conducted using urinary cre-
atinine as an independent variable (in addition to variables for age, gen-
der, and race/ethnicity), so that the environmental chemical concentra-
tions comparisons can be based on adjustment for urinary dilution and
demographic differences.

7.1. CREATININE DATA 105

The current NHANES web site no longer has this information in this for-
mat. It is available as a copy in a page titled “Using Blood Lipid or Urine
Creatinine Adjustments in the Analysis of Environmental Chemical Data”1

as the link within that page titled “Key Concepts about Blood Lipid or Using
Urine Creatinine Adjustments of Environmental Chemical Data”2

I have archived both pages at archive.org to preserve the availability of these pages.
Searching with the original links within the archival site will retrieve these original
files.

7.1 Creatinine data

The 2015-2016 document file is listed as ALB_CR_I.doc as it also contains infor-
mation for albumin.

Table 7.1: NHANES 2015-2016 albumin/creatinine data

Data File
Name Doc File Data File Date Published

Albumin
& Creati-
nine -
Urine

ALB_CR_I Doc ALB_CR_I Data [XPT -
539.8 KB]

Updated June 2019

The data file contains 8608 data points (328 missing.)

The listed codes within ALB_CR_I.doc are:

http://medbox.iiab.me/modules/en-cdc/www.cdc.gov/nchs/tutorials/environmental/critical_issues/adjustments/
http://medbox.iiab.me/modules/en-cdc/www.cdc.gov/nchs/tutorials/environmental/critical_issues/adjustments/
https://archive.org/
https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/ALB_CR_I.htm
https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/ALB_CR_I.XPT

106 CHAPTER 7. CREATININE ADJUSTMENT

Table 7.2: Codes for albumin and creatinine ALB_CR_I file

Code Description

SEQN Respondent sequence number
URXUMA Albumin, urine (ug/mL)
URDUMALC Albumin, urine comment code
URXUMS Albumin, urine (mg/L)
URXUCR Creatinine, urine (mg/dL)
URDUCRLC Creatinine, urine comment code
URXCRS Creatinine, urine (umol/L)
URDACT Albumin creatinine ratio (mg/g)

7.1.1 Downloading, merging PFAS and creatinine

As an example we’ll continue working on the PFAS_I urine metabolite and there-
fore we need to combine it with the creatinine data, again with the SEQN individ-
ual column. index{urine metabolite}

Download NHANES ALB_CR_I 2015-2016 data to temporary file
download.file("https://wwwn.cdc.gov/nchs/nhanes/2015-2016/ALB_CR_I.XPT",

tf <- tempfile(),
mode="wb")

Create Data Frame ALB_CR_I From Temporary File
ALB_CR_I <- foreign::read.xport(tf)

Once the ALB_CR_I data frame is created we can merge it with the PFAS_I data
frame.

Merging PFAS and total cholesterol TCHOL data frames
M2 <- merge(PFAS_I, ALB_CR_I, by.x = "SEQN", by.y = "SEQN")

dim(M2)

7.2. ANALYTE MEASUREMENT UNITS 107

[1] 2170 29

7.2 Analyte measurement units

The ratio of analyte to creatinine has to be performed using the same unit of
weight by volume as detailed in the formula we have seen. Therefore we must
look at the unit values provided in the HTML .DOC pages and find:

• LBXMFOS - Sm-PFOS (𝑛𝑔/𝑚𝐿)
• URXUCR - Creatinine, urine (𝑚𝑔/𝑑𝐿)

The two weight/volume are not on the same scale so we need to convert from one
to the other or to a common version. Creatinine is abundant and expressed in
milligrams per deciliter (𝑚𝑔/𝑑𝐿). PFAS is on a smaller scale in nanogram per
milliliter (𝑛𝑔/𝑚𝐿).

• 1𝑛𝑔 = 10−9𝑔𝑟𝑎𝑚
• 1𝑚𝑔 = 10−3𝑔𝑟𝑎𝑚
• 1𝑚𝑙 = 10−3𝑙𝑖𝑡𝑒𝑟
• 1𝑑𝐿 = 10−1𝑙𝑖𝑡𝑒𝑟

Hence 1𝑛𝑔/𝑚𝑙 = 10−9𝑔/10−3𝑙
and 1𝑚𝑔/𝑑𝐿 = 10−3𝑔/10−1𝑙

To avoid having too small values in decimals, the best option may be to convert
the creatinine values to the same unit as the PFAS knowing that 1𝑚𝑔/𝑑𝐿 =
10000𝑛𝑔/𝑚𝑙 as can be deducted from the ratio of the units. Therefore in a con-
version in this context would need to add a factor of 104 for the creatinine current
values:

𝐴𝑛𝑎𝑙𝑦𝑡𝑒
𝐶𝑟𝑒𝑎𝑡𝑖𝑛𝑖𝑛𝑒 ∗ 104 = 𝐴𝑛𝑎𝑙𝑦𝑡𝑒

𝐶𝑟𝑒𝑎𝑡𝑖𝑛𝑖𝑛𝑒 ∗ 10−4

108 CHAPTER 7. CREATININE ADJUSTMENT

7.3 Reduced set

The new M2merged data contains 29 columns, but we only need to keep a smaller
number of them for this demonstration: SEQN as well as the column for the sum
of PFAS (LBXMFOS) and those of creatinine. But now we know that we need to use
the creatinine column data URXUCR with 𝑚𝑔/𝑑𝐿.

We can create a subset data frame by choosing these columns as we have seen
before (section 5.3.)

new subset containing SEQN, PFAS sum and creatinine columns
PFAS_CRE <- M2[,c(1,21,26)]
class(PFAS_CRE)

[1] "data.frame"

dim(PFAS_CRE)

[1] 2170 3

7.4 Computing Analyte / Creatinine ratio

We now need to do 2 things:

1. compute the ratio value from the established formula
2. add this as a new column to PFAS_CRE

The computation will take values from column 2 (LBXMFOS) and divide it by the
values of column 3 (URXUCR) and multiply that with 10−4. This could be written
as:

𝑟𝑎𝑡𝑖𝑜 = 𝐿𝐵𝑋𝑀𝐹𝑂𝑆
𝑈𝑅𝑋𝑈𝐶𝑅 ∗ 10−4

We’ll write the resulting number, for each row, in a column called RATIO (as an
example) adding a column to the existing user-defined R object that we could
call PFAS_CRE. All we need to do is assign the name of the new column using

7.4. COMPUTING ANALYTE / CREATININE RATIO 109

the subsetting method using a $ sign: PFAS_CRE_R$RATIO. The column will be
created on that demand and populated with the values that are computed.

add new column RATIO with computer values
PFAS_CRE$RATIO <- with(PFAS_CRE, (LBXMFOS / URXUCR) * 10^-4)
check results
head(PFAS_CRE)

SEQN LBXMFOS URXUCR RATIO
1 83736 0.6 315 1.904762e-07
2 83745 0.8 178 4.494382e-07
3 83750 1.9 81 2.345679e-06
4 83754 5.4 148 3.648649e-06
5 83762 0.4 317 1.261830e-07
6 83767 1.0 65 1.538462e-06

We can check the distribution of values with boxplot and histogram. This time
we can use log base 10 with function log10() as it may better reflect the negative
powers of 10 in the data. (Note: the code below is indented for easier reading.)

par(mfrow=c(1,2))
boxplot(log10(PFAS_CRE$RATIO),

main = "PFAS/Creat. log10 ratio")

hist(log10(PFAS_CRE$RATIO),
freq=FALSE,
breaks = 50,
main = "Density Histogram ",
xlab = "log10 of PFAS/creatinine ratio")

par(mfrow=c(1,1))

110 CHAPTER 7. CREATININE ADJUSTMENT

−
8

−
7

−
6

−
5

−
4

PFAS/Creat. log10 ratio Density Histogram

log10 of PFAS/creatinine ratio

D
en

si
ty

−8 −7 −6 −5 −4
0.

0
0.

2
0.

4
0.

6
0.

8

Figure 7.1: Boxplot and histogram of log10 transformation of PFAS sum data after
creatinine adjustment.

7.5 Exposure - Outcome

Background3: “The key to understanding the environmental fate and transport of PFAS
compounds is their surface-active behavior. The fluorinated backbone is both hydropho-
bic (water repelling) and oleophobic/lipophobic (oil/fat repelling) while the terminal func-
tional group is hydrophilic (water loving). This means that PFAS compounds tend to parti-
tion to interfaces, such as between air and water with the fluorinated backbone residing in
air and the terminal functional group residing in water. The PFAS partitioning behavior
also is affected by the alkyl chain length and the charge on the terminal functional group.
In general, PFASs with shorter alkyl chain length are more water soluble than those with
longer lengths.”

3https://clu-in.org/contaminantfocus/default.focus/sec/Per-_and_Polyfluoroalkyl_
Substances_(PFASs)/cat/Chemistry_and_Behavior/

https://clu-in.org/contaminantfocus/default.focus/sec/Per-_and_Polyfluoroalkyl_Substances_(PFASs)/cat/Chemistry_and_Behavior/
https://clu-in.org/contaminantfocus/default.focus/sec/Per-_and_Polyfluoroalkyl_Substances_(PFASs)/cat/Chemistry_and_Behavior/

7.5. EXPOSURE - OUTCOME 111

One question that may arise is whether PFAS compounds could accumulate in the
fat tissue in the body. We can explore this option thanks to the “Body Measures
(BMX_I)” NHANES data, at least on a broad sense. But we first need to download
the file:

#BMX_I - 1.9 MB
download.file("https://wwwn.cdc.gov/nchs/nhanes/2015-2016/BMX_I.XPT",

tf <- tempfile(),
mode="wb")

BMX_I <- foreign::read.xport(tf)
Dimensions
dim(BMX_I)

[1] 9544 26

For this test we’ll only keep the BMXBMI column “*Body Mass Index (kg/m**2)*”
which is the 11^th column. We also need to keep the common SEQN column. We
can merge these 2 columns with the dataset containing the creatinine adjustment
of the PFAS sum data we just made earlier:

PFAS_CRE_BMI <- merge(PFAS_CRE, BMX_I[, c(1,11)], by.x = "SEQN", by.y = "SEQN")

We can take a quick look at the BMI distribution with original and log10 values in
a histogram form:

par(mfrow=c(1,2))
with(PFAS_CRE_BMI,hist(BMXBMI, breaks = 30))
with(PFAS_CRE_BMI,hist(log10(BMXBMI), breaks = 30)) ; par(mfrow=c(1,1))

We can note that, as would be expected,the logged values have a more “bell-
shaped”distribution.

We can now create a simple plot showing PFAS values as a function of BMI. We
can plot both the original values as well as the log values.

par(mfrow=c(1,2))
with(PFAS_CRE_BMI, plot(BMXBMI ~ LBXMFOS))

112 CHAPTER 7. CREATININE ADJUSTMENT

Histogram of BMXBMI

BMXBMI

F
re

qu
en

cy

10 20 30 40 50 60

0
50

10
0

15
0

20
0

25
0

Histogram of log10(BMXBMI)

log10(BMXBMI)

F
re

qu
en

cy

1.1 1.3 1.5 1.7
0

50
10

0
15

0

Figure 7.2: Histogram of BMI values and log10 values.

with(PFAS_CRE_BMI, plot(log10(BMXBMI) ~ log10(LBXMFOS))); par(mfrow=c(1,1))

We can add a simple linear regression line for both plot as we have seen previously
(section 5.7.)

lm1 <- with(PFAS_CRE_BMI, lm(BMXBMI ~ LBXMFOS))
lm2 <- with(PFAS_CRE_BMI, lm(log10(BMXBMI) ~ log10(LBXMFOS)))
print out values
lm1; lm2

Call:
lm(formula = BMXBMI ~ LBXMFOS)

Coefficients:

7.5. EXPOSURE - OUTCOME 113

0 5 10 15

20
30

40
50

60

LBXMFOS

B
M

X
B

M
I

−1.0 0.0 0.5 1.0

1.
2

1.
4

1.
6

1.
8

log10(LBXMFOS)

lo
g1

0(
B

M
X

B
M

I)

Figure 7.3: Histogram of BMI values and log10 values.

(Intercept) LBXMFOS
28.5857 0.1376

Call:
lm(formula = log10(BMXBMI) ~ log10(LBXMFOS))

Coefficients:
(Intercept) log10(LBXMFOS)

1.4458 0.0154

abline(lm1, col="blue", lwd=3)
abline(lm2, col="blue", lwd=3)

The slope in faint in both cases and indeed the slope values found in the

114 CHAPTER 7. CREATININE ADJUSTMENT

0 5 10 15

20
30

40
50

60

LBXMFOS

B
M

X
B

M
I

−1.0 0.0 0.5 1.0
1.

2
1.

4
1.

6
1.

8

log10(LBXMFOS)

lo
g1

0(
B

M
X

B
M

I)

Figure 7.4: Histogram of BMI values and log10 values with added linear regres-
sion.

coefficients records (section 5.7) are low at about 0.138 for the normal values
and 0.015 for the log values.

We can confirm that the correlation is faint by calculating the Pearson correlation
factor which is the default method for the cor() function. The help tells us that
we need to add use="complete.obs" to the command to avoid an NA result or
errors due to missing values.

with(PFAS_CRE_BMI, cor(BMXBMI ,LBXMFOS, use="complete.obs"))

[1] 0.03611288

with(PFAS_CRE_BMI, cor(log10(BMXBMI) ,log10(LBXMFOS), use="complete.obs"))

7.5. EXPOSURE - OUTCOME 115

[1] 0.05981631

The values are indeed very small in accord with the very flat linear regression.

7.5.1 Illusions

It can be noted that if the plot is stretched horizontally, the line will look even flat-
ter. The can be seen if we change the plotting position with par(mfrow=c(2,1))
instead of par(mfrow=c(1,2)).

0 5 10 15

20

LBXMFOS

B
M

X
B

M
I

−1.0 −0.5 0.0 0.5 1.0

1.
2

log10(LBXMFOS)

lo
g1

0(
B

M
X

B
M

I)

Figure 7.5: Streching horizontally makes the linear regression appear more hor-
izontal

7.5.2 qplot version

The qplot() version can be created by getting inspired to what was done in sec-
tion 5.8.2.

116 CHAPTER 7. CREATININE ADJUSTMENT

Need to recreate plot to add ABline
qplot(x = log10(LBXMFOS), y = log10(BMXBMI), data = PFAS_CRE_BMI,

geom = c("point", "smooth"),
method = "lm",
se = T)

Since qplot() is being retired, here the code for the exact same plot with
ggplot() is:

Need to recreate plot to add ABline
ggplot(data = PFAS_CRE_BMI, aes(x = log10(LBXMFOS), y = log10(BMXBMI))) +
geom_point() +
geom_smooth(method = "lm", se = TRUE)

`geom_smooth()` using formula = 'y ~ x'

7.6 Creating a master data file

See Appendix D for a complete set of code to download, merge and save the
master file.

We have learned how to combine two NHANES data files, but it is could useful
to be able to merge more data into a large repository or “master” file from which
smaller datasets can be created.

The merge() function can automatically recognize identical columns which will
make the merging easier as it will not be necessary to use the by.x commands.
In fact, doing so will prevent the merge() function to recognize columns that are
identical and this will result in duplicate columns. However, to make the file a
“master* we would need to keep all rows, and this is accomplished by adding the
all.x option (see ?merge.) Below we’ll download and merge more datasets, in-
cluding some that we already have downloaded. This should just be a review.

We’ll add the file BMX_I for body/mass index and other body measurements as

7.6. CREATING A MASTER DATA FILE 117

1.3

1.5

1.7

−1.0 −0.5 0.0 0.5 1.0
log10(LBXMFOS)

lo
g1

0(
B

M
X

B
M

I)

Figure 7.6: Histogram of BMI log10 values, linear regression (blue) and standard
error (gray.)

well as the demographic file DEMO_I and the PFAS_I.

DEMO_I - 3.6 MB
download.file("https://wwwn.cdc.gov/nchs/nhanes/2015-2016/DEMO_I.XPT",

tf <- tempfile(),
mode="wb")

DEMO_I <- foreign::read.xport(tf)
Dimensions
dim(DEMO_I)

[1] 9971 47

We previously downloaded (or learned how to download) the albumin/creatinine
file (ALB_CR_I) and that of total cholesterol TCHOL_I.

118 CHAPTER 7. CREATININE ADJUSTMENT

Let’s merge all 4 keeping all rows starting withDEMO_I so that it is on the left hand
side.

Master1 <- merge(DEMO_I, BMX_I, all.x=TRUE)
Master2 <- merge(Master1, PFAS_I, all.x=TRUE)
Master3 <- merge(Master2, TCHOL_I, all.x=TRUE)
Master4 <- merge(Master3, ALB_CR_I, all.x=TRUE)
dimensions
dim(Master1) ; dim(Master2); dim(Master3); dim(Master4)

[1] 9971 72

[1] 9971 93

[1] 9971 95

[1] 9971 102

The process would be the same to add more data file.

To save the master file into a comma separated file (.csv) use the write_csv()
function of dyplrwhich is “about twice as fast aswrite.csv(), and never writes
row names.” (See chapter 8 section 8.3 and chapter 10 as we have not yet studied
that package at this point.)

For example to save the data frame Master4 in the current directory:

write_csv(Master4, "Master4.csv")

Using base R we would write similarly:

write.csv(Master4, "Master4.csv")

This would allow to read the data again without having to go through the process
of creating the combined dataset.

Chapter 8

Tidyverse: another R Universe

Tidyverse exists and it is a dialect of R said Hadley Wickham1 at the RStudio::Conf
20172 about this single package that is an umbrella name for a coherent system
of [multiple] packages for data manipulation, exploration and visualization that share a
common design philosophy.3

In this chapter:
• Tidyverse goal
• Tidyverse packages
• Magrittr: pipes
• dplyr: pipeline demonstration

Hadley Wickham’s notes from the 2017 conference4 about Tidyverse:

1. It exists

1Hadley Wickham is the Chief Scientist at RStudio, a member of the R Foundation, and Ad-
junct Professor at Stanford University and the University of Auckland. He builds tools (both com-
putational and cognitive) to make data science easier, faster, and more fun. He develops packages
for data science.

2https://rstudio.com/resources/rstudioconf-2017/
3https://rviews.rstudio.com/2017/06/08/what-is-the-tidyverse/

119

https://rstudio.com/resources/rstudioconf-2017/
https://rstudio.com/resources/rstudioconf-2017/
https://rstudio.com/resources/rstudioconf-2017/
https://rviews.rstudio.com/2017/06/08/what-is-the-tidyverse/

120 CHAPTER 8. TIDYVERSE: ANOTHER R UNIVERSE

2. It has a web site
3. It has a package
4. It has a book

Perhaps more importantly:

Goal: Solve complex problems by combining sim-
ple, uniform pieces.
The fundamental philosophy in Tidyverse is to separate commands and
queries

A commands function performs an action
A query function computes a value

Examples:

Command: print(), plot(), write.csv(), <-
Query: summary(), sqrt()

Tidyverse is a package that installs a series of other packages. The fact that “it has
a package” means that all packages composing Tidyverse can be installed with the
single command:

install.packages("tidyverse")

instead of:

install.packages(c(
"broom", "dplyr", "feather", "forcats","ggplot2", "haven",
"httr", "hms", "jsonlite", "lubridate", "magrittr",
"modelr", "purrr", "readr", "readxl", "stringr", "tibble",
"rvest", "tidyr", "xml2"

))

Study: Watch the first 30 minutes of Hadley Wickham’s keynote presenta-

8.1. MAGRITTR - PIPE AND PIPELINES 121

tion at RStudio::Conf 2017 - February 10, 2017

Data Science in the Tidyverse5

In the next sections we’ll explore the packages that may be useful for analysis of
tabular data such as NHANES data.

8.1 Magrittr - pipe and pipelines

In English a “pipe” can designate an object to smoke tobacco or house plumbing.
In both cases it can be viewed as a hollow cylinder.

In computing a “pipe” is a method to create a data stream in the memory of the
computer without the need to create intermediary files or R objects. In Unix the
pipe is represented by a vertical bar: | but in R the pipe is represented by:

% > %
In English, when reading code, it is useful to replace the pipe with and then to
better understand the successive passage of each step or function.

Once started with data from an object the resulting stream of data can be modified
by a function and then passed on to the next function, and then the next etc. The
flow of data can be conceptualized as a flow of water going through pipes until it
exits (figure 8.1.)

The stream of data can be modified by successive function, each passing the data
stream along the “pipe” to the next function until the final result (8.2.)

There can be more than one operation until the final result.

The command-query distinction is useful for pipes

https://rstudio.com/resources/rstudioconf-2017/data-science-in-the-tidyverse-hadley-wickham/

122 CHAPTER 8. TIDYVERSE: ANOTHER R UNIVERSE

Figure 8.1: Imagining the data strem as a flow of water in pipes.

object %>% operation() result

Figure 8.2: The pipe operator is the conduit for the data stream.

The body is made up of queries
Every pipe is ended by a command

The use of pipe can help create pipelines to manipulate, convert, gather, select data
in a way that ends in a final result without the need of intermediate items, as all
happens while “in transit” within the conduits.

The pipe is widely used in the context of Tidyverse but it is not restricted to that
Universe and can find its uses in writing R commands.

Study: Watch the 25 min RStudio::Conf 2017 by Bob Rudis:

Writing Readable Code with Pipes6

https://rstudio.com/resources/rstudioconf-2017/writing-readable-code-with-pipes/

8.2. TIBBLE 123

The name of the package is derived as a reference to the famous surrealist
painter René Magritte 1929 image “this is not a pipe” as an image is not the
object itself. This image is now at the Los Angeles County Museum of Art.

8.2 Tibble

A “tibble” is a data frame, but a modern reimagining of the data.frame class.
{tibble!data frame}

From the Tidyverse Tibble web pagea: Tibbles are data.frames that
are lazy and surly: they do less (i.e. they don’t change variable names or types, and
don’t do partial matching) and complain more (e.g. when a variable does not ex-
ist). This forces you to confront problems earlier, typically leading to cleaner, more
expressive code. Tibbles also have an enhanced print() method which makes
them easier to use with large datasets containing complex objects.

ahttps://tibble.tidyverse.org/

As far as we are concerned we do not have to worry about that as Tidyverse pack-
ages work fine with data frames. We’ll just see the word “tibble” appear when
working with the Tidyverse functions and that’s simply what it is.

One difference in the print out of a table of data from a data frame in a tibble form
is that we’ll see the data type printed under the column name such as <chr> for
character column, <int> for integers and <dbl> for “double-precision decimal
number.”

https://en.wikipedia.org/wiki/Ren%C3%A9_Magritte
https://en.wikipedia.org/wiki/The_Treachery_of_Images
https://tibble.tidyverse.org/

124 CHAPTER 8. TIDYVERSE: ANOTHER R UNIVERSE

Trivia
The Tibble logo font character for letters T and E are very close in shape
(but not the B) but could the tibble name also be related to the famous
sweet “tribble” creature on the original Star Trek. Or is it a New Zealander
way of pronouncing “table”? Who know? (perhaps H W does?)

Figure 8.3: Is the Tibble logo a hint on Star Trek?

8.3 dplyr - overview

From dplyr.tidyverse.org/:

dplyr is a grammar of data manipulation, providing a consistent set of verbs that
help you solve the most common data manipulation challenges.

select() picks variables based on their names. (columns)
filter() picks cases based on their values. (rows)
arrange() changes the ordering of the rows.
mutate() adds new variables that are functions of existing variables.
summarise() reduces multiple values down to a single summary.

These all combine naturally with group_by()which allows you to perform
any operation “by group”.

https://dplyr.tidyverse.org/

8.3. DPLYR - OVERVIEW 125

8.3.1 Demo 1: all together pipeline

Before we go into details of the various verbs that makedplyrpowerful, let’s first
create a pipeline as an example of the power of the Tidyverse methods: with one
series of commands and queries we’ll recreate one of the plots of figure 7.2 “just
like that!” with no need of any intermediate steps or temporary objects.

We’ll start with our master fileMaster4 “injected” into the pipeline and then we’ll:

• select specific columns (automatic subset)
• filter out rows that have NA
• compute the RATIO for creatinine ajustment (mutate)
• plot the data with qplot() and include automatic linear regression.

Now here’s the code - discussed further below:

First, we need to make sure that tidyverse is loaded:

library(tidyverse)

Then we run the pipeline:

pipeline demo 1
Master4 %>%
select(SEQN, LBXMFOS, URXUCR, BMXBMI) %>%
filter(!is.na(LBXMFOS)) %>%
head() %>%
mutate (RATIO = (LBXMFOS/URXUCR)*10^-4) %>%
qplot(log10(RATIO), BMXBMI, data = ., geom = c("point", "smooth"))

`geom_smooth()` using method = 'gam' and formula = 'y ~ s(x, bs =
"cs")'

Here are a few more details about the code, and let’s see if we follow the The
command-query distinction useful for pipes

• The body is made up of queries

126 CHAPTER 8. TIDYVERSE: ANOTHER R UNIVERSE

20

30

40

50

60

−8 −7 −6 −5 −4
log10(RATIO)

B
M

X
B

M
I

Figure 8.4: A pipeline to recreate scatter plot of BMI values as s function of log10
RATIO creatinine adjustment for the sum of PFAS data column LBXMFOS.

• Every pipe is ended by a command

But what about the beginning?

The beginning of the pipe needs to start the “injection” of data. In the example
we started with Master4 which is a very large dataset:

Master4 %>%: the implied function here is print() which is a command per-
forming an action.

However, we could also have started with:

select(Master4, SEQN, LBXMFOS, URXUCR, BMXBMI) %>%: in this case
the Master4 data is within the query function select().

But in both cases we have data starting to stream down the pipeline.

8.3. DPLYR - OVERVIEW 127

Figure 8.5: Data is first injected in the pipeline (Hydroelectric power station,
Huanza, Peru.)

filter(!is.na(LBXMFOS)) %>% uses a logical operator (Appendix B.4) to re-
move the rows that have NA within the LBXMFOS column. ! is negating the next
statement is.na that checks if there is an NA value. This can be read in English
as “is not NA”. This is a query.

head() %>% is commented out and can be used for testing and just show the
first 6 lines of data passing through. It does not hamper the pipeline to have a line
commented out. Actual comments of explanation could therefore be included
along the pipeline. head() is a command that would end the pipeline for testing.

mutate (RATIO = (LBXMFOS/URXUCR)*10^-4) %>% computes the creatinine
adjustment as was detailed in section 7.4 using the same formula. A new column
named RATIOwill be created to store the computation, just as it was done in base
R. This is a query.

qplot(log10(RATIO), BMXBMI, data = ., geom = c("point",
"smooth")) will make the plot, with default regression curve (to compute
a linear model line see section 7.5.2. The geom potion could be removed to just
get the points.)

The option data = . may appear “strange” and we have not seen this yet. Since
we are in a pipeline, the data is symbolically represented by the dot . which is
useful, otherwise how would we specify where the data came from?

128 CHAPTER 8. TIDYVERSE: ANOTHER R UNIVERSE

Did we follow the pipe rules? Overall yes!

qplot is first a command that will perform the action of creating a plot. How-
ever, this function as well as its bigger version qqplot2() were created before
the Tidyverse, and does not adhere completely to those rules as internally there
will be some computation (hence query) to create the regression line or curve.
However, one could argue that since the plotting of the line could be the final
step, that would be the result of a command.

Chapter 9

Intermission: data wrangling

NHANES datasets are “curated” and are created following standard practice re-
sulting in datasets listed in tabular data formatted in a way well suited for R.

This section is here as an “intermission” in the form of a lecture by Garrett
Grolemund, Data Scientist and Master Instrutor at RStudio, split into 4 YouTube
videos. The whole four parts are listed here, but the most important for treating
NHANES data would be Part 3 about the dplyr Tidyverse package. Part 1 would
review what was learned in the previous chapter (8) and Part 2 is about the tidyr
package that helps reformat the data, a very useful tool but not really necessary
for NHANES data.

Description of the RStudio videos:

Data wrangling is too often the most time-consuming part of data science and ap-
plied statistics. Two tidyverse packages, tidyr and dplyr, help make data ma-
nipulation tasks easier. These videos introduce you to these tools. Keep your R code
clean and clear and reduce the cognitive load required for common but often complex
data science tasks.

129

130 CHAPTER 9. INTERMISSION: DATA WRANGLING

Table 9.1: Lectures on data wrangling: Tidyverse tidyr and
dplyr packages.

Title Link Time

Part 1: What is data
wrangling? Intro,
Motivation, Outline,
Setup

https://youtu.be/jOd65mR1zfw 8:26

Part 2: Tidy Data and
tidyr

https://youtu.be/1ELALQlO-yM 17:36

Part 3: Data
manipulation tools:
dplyr

https://youtu.be/Zc_ufg4uW4U 19:34

Part 4: Working with
Two Datasets: Binds,
Set Operations, and
Joins

https://youtu.be/AuBgYDCg1Cg 7:23

9.1 Part 3 here

HTML version has Part 3 embedded here:

Pt. 3: Data manipulation tools: dplyr https://youtu.be/Zc_ufg4uW4U

00.40 setup
02:00 - dplyr::select
03:40 - dplyr::filter
05:05 - dplyr::mutate
07:05 - dplyr::summarise
08:30 - dplyr::arrange
09:55 - Combining these tools with the pipe (Setup for the Grammar of Data Ma-
nipulation)
11:45 - dplyr::group_by

https://youtu.be/jOd65mR1zfw
https://youtu.be/1ELALQlO-yM
https://youtu.be/Zc_ufg4uW4U
https://youtu.be/AuBgYDCg1Cg
https://youtu.be/Zc_ufg4uW4U
https://www.youtube.com/watch?v=Zc_ufg4uW4U&t=120s
https://www.youtube.com/watch?v=Zc_ufg4uW4U&t=220s
https://www.youtube.com/watch?v=Zc_ufg4uW4U&t=305s
https://www.youtube.com/watch?v=Zc_ufg4uW4U&t=425s
https://www.youtube.com/watch?v=Zc_ufg4uW4U&t=510s
https://www.youtube.com/watch?v=Zc_ufg4uW4U&t=595s
https://www.youtube.com/watch?v=Zc_ufg4uW4U&t=705s

Chapter 10

dplyr - data manipulation

While base R has many tools that can do the job, dplyr and other Tidyverse pack-
ages can easily work together and allow the easy creation of pipelines to accom-
plish a task as was demonstration in the previous chapter 8.3.1.

In this chapter we’ll explore a few dplyr verbs
• select to choose columns
• filter to check data on rows
• arrange to order data

• mutate to compute new values
• summarise to create condensed data
• group_by to select specific data

In addition we’ll learn about some conditional selection within the functions
described by these verbs.

131

132 CHAPTER 10. DPLYR - DATA MANIPULATION

We’ll use theMaster4 large data file that was created previously.
(See all download and merge code in Appendix D if you need to recreated
it.) Master4 is a merge, in order of the following datasets (links are to the
documentation):
DEMO_I, BMI_I, PFAS_I, TCHOL_I, ALB_CR_I

10.1 Selecting columns

To limit the output length most examples will be piped in the head() func-
tion to only print the column headers followed by 6 data lines. %>% head()
may terminate the command but the pipeline can be extended further.

The selection of columns is easy and just requires the name of the data frame con-
taining the data and specifying the column names that we want to keep for fur-
ther use in an analysis. The total length (number of rows) would be printed, here
limited by piping into head().

select(Master4, SEQN, LBXMFOS, URXUCR, BMXBMI) %>% head()

SEQN LBXMFOS URXUCR BMXBMI
1 83732 NA 41 27.8
2 83733 NA 181 30.8
3 83734 NA 70 28.8
4 83735 NA 102 42.4
5 83736 0.6 315 20.3
6 83737 NA 64 28.6

We can note that in column LBXMFOS there are 5 NA, in the next section we’ll see
how to get rid of them.

https://wwwn.cdc.gov/nchs/nhanes/2015-2016/DEMO_I.htm
https://wwwn.cdc.gov/nchs/nhanes/2015-2016/BMX_I.htm
https://wwwn.cdc.gov/nchs/nhanes/2015-2016/PFAS_I.htm
https://wwwn.cdc.gov/nchs/nhanes/2015-2016/TCHOL_I.htm
https://wwwn.cdc.gov/nchs/nhanes/2015-2016/ALB_CR_I.htm

10.2. FILTERING ROWS 133

Note that the square bracket subsetting also works, for example to select the first
7 columns we could write select(Master4, 1:7) which would be equivallent
to Master4[, 1:7] in this case.

10.2 Filtering rows

The filtering of rows depends on the desired outcome. One step that is useful
and often necessary is to remove the NA values. If we continue with the selected
columns we can remove those with:

select(Master4, SEQN, LBXMFOS, URXUCR, BMXBMI) %>% head() %>%
filter(!is.na(LBXMFOS))

SEQN LBXMFOS URXUCR BMXBMI
1 83736 0.6 315 20.3

Since the head() function was first, we are only filtering the first 6 rows, and 5
are therefore eliminated. If we move the head() function after, we’ll select the
first 6 rows that do not have any NA.

select(Master4, SEQN, LBXMFOS, URXUCR, BMXBMI) %>%
filter(!is.na(LBXMFOS)) %>%
head()

SEQN LBXMFOS URXUCR BMXBMI
1 83736 0.6 315 20.3
2 83745 0.8 178 25.0
3 83750 1.9 81 24.1
4 83754 5.4 148 43.7
5 83762 0.4 317 38.0
6 83767 1.0 65 26.3

We can use other operator (Appendix B) to filter the rows with conditional state-
ments. For example we could ask to keep the BMI values below or equal to 25.0
and more, and at the same time removing NA values from chosen columns:

134 CHAPTER 10. DPLYR - DATA MANIPULATION

select(Master4, SEQN, LBXMFOS, URXUCR, BMXBMI) %>%
filter(BMXBMI <= 25.0) %>%
head()

SEQN LBXMFOS URXUCR BMXBMI
1 83736 0.6 315 20.3
2 83738 NA 100 18.1
3 83739 NA 25 15.7
4 83745 0.8 178 25.0
5 83746 NA 34 16.1
6 83748 NA 14 16.1

We could have the filter() function more than once within the pipeline, but
we can also have multiple statements at the same time:

select(Master4, SEQN, LBXMFOS, URXUCR, BMXBMI) %>%
filter(!is.na(BMXBMI),

BMXBMI <= 25.0,
!is.na(LBXMFOS),
URXUCR == 25.0) %>%

head()

SEQN LBXMFOS URXUCR BMXBMI
1 85253 2.8 25 24.2
2 86086 1.1 25 20.3
3 88829 0.5 25 20.1
4 89326 0.7 25 22.9
5 89399 1.1 25 24.0
6 90178 0.6 25 20.4

Note on style: writing each conditional statement on a separate line makes it easier
to read and understand the code.

The dyplr function drop_na() would also remove NA from all rows, or

10.3. ARRANGE DATA 135

specified rows.

10.3 Arrange data

For dplyr to arrange data is to sort data in order. The following example accom-
plishes many things at the same time and the “seed” makes the results always
the same. To see just 6 lines of ordered data based on age, the data is first ran-
domly sampled to keep only 100 rows with a dyplr function sample_n(). All rows
in the age column RIDAGEYR without value are removed with drop_na(). Four
columns are selected, and the age is filtered to keep only ages above 12. The data
is then arranged (ordered) by the first (age) and then second column (creatinine)
as designated. The data is first ordered by age and then by the second parameter.

set.seed(18) ;
Master4 %>%
sample_n(100) %>%
drop_na(RIDAGEYR) %>%
select(SEQN, URXUCR, BMXBMI, RIDAGEYR) %>%
filter(RIDAGEYR >= 12) %>%
arrange(RIDAGEYR, URXUCR) %>%
head()

SEQN URXUCR BMXBMI RIDAGEYR
1 89664 114 16.1 12
2 91777 148 20.3 13
3 90183 330 26.2 13
4 92077 116 17.8 14
5 84253 144 20.6 14
6 92721 161 25.2 14

Note that the order in the pipe may be important, but the modularity of the code

136 CHAPTER 10. DPLYR - DATA MANIPULATION

makes it easy to try if there is an effect. For example, since we are only looking at
6 values here, it makes no difference if the sampling of 100 rows occurs before or
after the dropping of NA in the age column.

10.4 mutating data

As we explored in the previous demonstration (8.3.1) we can create a new column
when computing data with the mutate() function. As an example we can com-
pute a ratio of ℎ𝑒𝑖𝑔ℎ𝑡

𝑤𝑒𝑖𝑔ℎ𝑡 as it is often a useful measure. In the BMX_I data we can
find the relevant column names:

• BMXWT - Weight (kg)
• BMXHT - Standing Height (cm)
• BMXBMI - Body Mass Index (kg/m**2)

We can then make a selection of columns and compute the ratio which will be
saved in a new column with the name that we define for example HWRATIO. As an
example the data is then rounded to just 1 decimal point as most of the rest of the
data:

Master4 %>%
select(SEQN, BMXWT, BMXHT, BMXBMI) %>%
mutate(HWRATIO = BMXHT / BMXWT,

HWRATIO2 = round(HWRATIO, digit=1)) %>%
head()

SEQN BMXWT BMXHT BMXBMI HWRATIO HWRATIO2
1 83732 94.8 184.5 27.8 1.946203 1.9
2 83733 90.4 171.4 30.8 1.896018 1.9
3 83734 83.4 170.1 28.8 2.039568 2.0
4 83735 109.8 160.9 42.4 1.465392 1.5
5 83736 55.2 164.9 20.3 2.987319 3.0
6 83737 64.4 150.0 28.6 2.329193 2.3

10.4. MUTATING DATA 137

10.4.1 Mutate with conditional statement

When analyzing tabular data we may have the choice will be made for each row.
Here is an example found online: Creating New Variables in R with mutate() and
ifelse()1.

Create 3 vectors
section <- c("MATH111", "MATH111", "ENG111")
grade <- c(78, 93, 56)
student <- c("David", "Kristina", "Mycroft")
Combine vectors into a dataframe
gradebook <- data.frame(section, grade, student)
Test of grade level and assign an outcome
mutate(gradebook, Pass.Fail = ifelse(grade > 60, "Pass", "Fail"))

section grade student Pass.Fail
1 MATH111 78 David Pass
2 MATH111 93 Kristina Pass
3 ENG111 56 Mycroft Fail

Results are printed out

By “nesting” multiple ifelse() statements we can manage to provide multiple
choices: the second argument is replaced by another ifelse() statements in
succession. The final iteration has a single option that is not an ifelse() state-
ments. In the example below, from the same source, the gradebook is read one
row at a time, and then we need to provide a grade based on the letter system: A
through D or F.

mutate(gradebook,
letter =

ifelse(grade %in% 60:69, "D",
ifelse(grade %in% 70:79, "C",

ifelse(grade %in% 80:89, "B",

1https://rpubs.com/daranzolin/mutateifelse

https://rpubs.com/daranzolin/mutateifelse
https://rpubs.com/daranzolin/mutateifelse
https://rpubs.com/daranzolin/mutateifelse

138 CHAPTER 10. DPLYR - DATA MANIPULATION

ifelse(grade %in% 90:99, "A",
"F")))))

section grade student letter
1 MATH111 78 David C
2 MATH111 93 Kristina A
3 ENG111 56 Mycroft F

This makes use of the %in% operator that can easily be understood as being able
to test if a value is within the proposed range. On the first line we ask if the test
of column grade for each row is between 60 and 69. If the answer is “yes” which
means the test is TRUE, then the value will be “D”. If the test is FALSE we’ll go to
the next question and so on until the last line where the final choice is F. (Note
that for readability the code is indented, and “F” is the alternate option for the
test grade %in% 90:99.)

We’ll use this statement in a very useful way in a future section (10.7.)

10.5 Summarising and grouping data

The following data can be found in the DEMO_I demographic data file:

• RIAGENDR: 1-male, 2-female (none missing)
• DMDMARTL: 1 Married, 2 Widowed, etc.
• DMDEDUC2 - Education level - Adults 20+
• INDHHIN2 - Annual household income

We want to get some information by group, in this case we’ll group by marital
status and then count the total number of observations for each case and we’ll
store this in column Counts. For each marital status code, we’ll then count how
many women and men are in each category that we’ll report in columns Mnum
and Wnum (the sum of these 2 on each line should be equal to the reported Counts
column.)

10.5. SUMMARISING AND GROUPING DATA 139

For simplicity with income and education we’ll simply compute the mean of the
codes, which should still give us an indication of the level of income and educa-
tion for each category of marital status.

We’ll place the results in a user-defined R object so that we can reuse it in the next
section without re-writing the complete pipeline. Let’s call it Xsum for example

Xsum <- Master4 %>%
select(SEQN, RIAGENDR, DMDMARTL, DMDEDUC2, INDHHIN2) %>%
drop_na() %>%
group_by(DMDMARTL) %>%
summarise(Counts = n() ,

Mnum = sum(RIAGENDR == 1),
Wnum = sum(RIAGENDR == 2),
MeanIncCode = mean(INDHHIN2),
MeanEducCode = mean(DMDEDUC2))

Xsum # print output

A tibble: 8 x 6
DMDMARTL Counts Mnum Wnum MeanIncCode MeanEducCode

<dbl> <int> <int> <int> <dbl> <dbl>
1 1 2792 1481 1311 12.5 3.52
2 2 401 106 295 11.1 3.00
3 3 597 239 358 10.1 3.49
4 4 184 66 118 9.48 2.80
5 5 999 475 524 11.6 3.60
6 6 533 270 263 10.7 3.25
7 77 2 1 1 42 4
8 99 1 0 1 99 9

140 CHAPTER 10. DPLYR - DATA MANIPULATION

10.6 Recoding: string replacement

The above results are OK but it would be nice to be able to change some of the code
numbers to actual English word such as “married” or “single” in text. This can be
accomplished in many ways in dplyr but one of the simplest is to use recode()
as a special case within mutate() to overwrite a column.

Table 10.1: The DMDMARTL codes from NHANES DEMO_I

Code or Value Value Description Count Cumulative

1 Married 2886 2886
2 Widowed 421 3307
3 Divorced 614 3921
4 Separated 192 4113
5 Never married 1048 5161
6 Living with partner 555 5716
77 Refused 2 5718
99 Don’t Know 1 5719
. Missing 4252 9971

We can then recode the DMDMARTL column of Xsum with the following pipeline:

Xsum2 <- Xsum %>% mutate(DMDMARTL = recode(DMDMARTL,
`1` = "Married",
`2` = "Widowed",
`3` = "Divorced",
`4` = "Separated",
`5` = "Nevermarried",
`6` = "Living with partner",
`77` = "Refused",
`99` = "Don' Know")

)
Xsum2 # print out

10.6. RECODING: STRING REPLACEMENT 141

A tibble: 8 x 6
DMDMARTL Counts Mnum Wnum MeanIncCode MeanEducCode
<chr> <int> <int> <int> <dbl> <dbl>

1 Married 2792 1481 1311 12.5 3.52
2 Widowed 401 106 295 11.1 3.00
3 Divorced 597 239 358 10.1 3.49
4 Separated 184 66 118 9.48 2.80
5 Nevermarried 999 475 524 11.6 3.60
6 Living with partner 533 270 263 10.7 3.25
7 Refused 2 1 1 42 4
8 Don' Know 1 0 1 99 9

(Credit: this example inspired by How to Recode a Column with dplyr in R2)

In fact 2 of the columns are not well named and we should rename Mnum and
Wnum to simply Men and Women in the table. This is done with the dplyr rename()
function:

Xsum2 %>% rename(Men = Mnum, Women = Wnum)

A tibble: 8 x 6
DMDMARTL Counts Men Women MeanIncCode MeanEducCode
<chr> <int> <int> <int> <dbl> <dbl>

1 Married 2792 1481 1311 12.5 3.52
2 Widowed 401 106 295 11.1 3.00
3 Divorced 597 239 358 10.1 3.49
4 Separated 184 66 118 9.48 2.80
5 Nevermarried 999 475 524 11.6 3.60
6 Living with partner 533 270 263 10.7 3.25
7 Refused 2 1 1 42 4
8 Don' Know 1 0 1 99 9

2https://cmdlinetips.com/2019/04/how-to-recode-a-column-with-dplyr-in-r/

https://cmdlinetips.com/2019/04/how-to-recode-a-column-with-dplyr-in-r/
https://cmdlinetips.com/2019/04/how-to-recode-a-column-with-dplyr-in-r/

142 CHAPTER 10. DPLYR - DATA MANIPULATION

10.7 Getting it all together

We now know enough that we should be able to get it all together in an annotated
pipeline starting with Master4.

10.7.1 Example 1: by gender

Let’s try to answer the question: “What is the average level of total cholesterol in
men and women from the Master4 dataset.?”

To answer the question we’ll need the following:

0. create an object to contain the results and redirect to it
1. Start with Master4 (inject data in the pipeline)
2. Select relevant columns
3. Remove NA rows
4. Group by gender
5. Summarize.

We now know how to do this in a data stream with a pipeline. Let’s write it and
add comment lines so we can remember later the purpose of the code:

TcholGender <- Master4 %>%
select columns
select(SEQN, RIAGENDR, LBXTC) %>%
fitler all rows to remove NAs
drop_na() %>%
Group by gender
group_by(RIAGENDR) %>%
summarise(

Men = sum(RIAGENDR == 1),
Women = sum(RIAGENDR == 2),
MeanTChol = mean(LBXTC))

Print results:

10.7. GETTING IT ALL TOGETHER 143

TcholGender

A tibble: 2 x 4
RIAGENDR Men Women MeanTChol

<dbl> <int> <int> <dbl>
1 1 3545 0 178.
2 2 0 3711 183.

The final table will be short but that is exactly what a summary should be.

The value for men is 177.75 based on a total of 3545 observations.

For women the we see is 182.65 based on a total of 3711 observations.

(See section 13.2.4 later to learn how these numbers were embedded within the
text automatically without copy/paste!)

10.7.2 Example 2: by gender and age

Let’s make things a bit more interesting with the question:

“Base on gender and age group, what is the mean and standard deviation of
PFAS compounds, as well as the mean, standard deviation, minimum, and
maximum values of total cholesterol in men and women?”

One of the key word is “age group” as in the NHANES data age is a single integer
number with a range from 1 to 80 in RIDAGEYR column and therefore it is “up
to us” to create the age groups! This can be done rather easily within a combi-
nation of mutate() and with nested ifelse() statements within. Nesting the
ifelse() function within itself allows making multiple choices. (For a refresher
on ifelse() see section 10.4.1.)

We’ll have to use the appropriate columns of data, compute the creatinine adjust-
ment and summarize these values by age group for men and women.

A new base R function is introduced here formatC() which will force the num-
bers to be printed in scientific exponent for better clarity. (Try without and see
the difference! - this option was suggested on Stack Overflow.)

https://stackoverflow.com/questions/39623636/forcing-r-output-to-be-scientific-notation-with-at-most-two-decimals

144 CHAPTER 10. DPLYR - DATA MANIPULATION

The pipeline below is annotated to specify the function of each line and the results
are saved within a user-defined R object Example2.

Example2 <- Master4 %>%
select columns
select(SEQN, RIAGENDR, RIDAGEYR, LBXMFOS, URXUCR, LBXTC) %>%
fitler all rows to remove NAs
drop_na() %>%
Creatinine adjustment
mutate (RATIO = (LBXMFOS/URXUCR)*10^-4) %>%
categorize ages in 5 groups:
Children: G0TO18, younger adults: G19TO35,
and older adults: G36TO65, seniors: G66TO79,
and 80 and older: G80.
mutate(AGEGROUP = ifelse(RIDAGEYR %in% 0:18, "G0TO18",

ifelse(RIDAGEYR %in% 19:35, "G19TO35",
ifelse(RIDAGEYR %in% 36:65, "G36TO65",

ifelse(RIDAGEYR %in% 66:79,
"G66TO79", "G80"))))) %>%

#
NOTE: this would be a place to split the pipeline in 2 sections
#
Group by gender first, age second
group_by(RIAGENDR, AGEGROUP) %>%
Summarize: count totals,
summarise(

Men = sum(RIAGENDR == 1),
Women = sum(RIAGENDR == 2),
MeanPFASR = formatC(mean(RATIO), format = "e", digits = 2),
sdPFASR = formatC(sd(RATIO), format = "e", digits = 2),
MeanTChol = mean(LBXTC),
sdTChol = sd(LBXTC),
minTChol = min(LBXTC),

10.7. GETTING IT ALL TOGETHER 145

maxTChol = max(LBXTC)
)

`summarise()` has grouped output by 'RIAGENDR'. You can override
using the `.groups` argument.

Print out the results
Example2

A tibble: 10 x 10
Groups: RIAGENDR [2]

RIAGENDR AGEGROUP Men Women MeanPFASR sdPFASR MeanTChol sdTChol minTChol
<dbl> <chr> <int> <int> <chr> <chr> <dbl> <dbl> <dbl>

1 1 G0TO18 175 0 8.47e-07 8.68e-07 152. 28.6 94
2 1 G19TO35 235 0 1.68e-06 1.88e-06 180. 35.6 98
3 1 G36TO65 382 0 3.24e-06 5.99e-06 198. 46.7 111
4 1 G66TO79 117 0 3.95e-06 3.92e-06 169. 35.1 90
5 1 G80 44 0 5.12e-06 6.42e-06 165. 35.0 101
6 2 G0TO18 0 141 7.70e-07 7.88e-07 158. 29.5 103
7 2 G19TO35 0 238 9.68e-07 1.31e-06 176. 38.5 100
8 2 G36TO65 0 459 2.35e-06 3.80e-06 201. 36.3 106
9 2 G66TO79 0 124 4.58e-06 6.32e-06 202. 48.5 84

10 2 G80 0 53 5.86e-06 6.29e-06 187. 34.1 126
i 1 more variable: maxTChol <dbl>

The print-out might be truncated (depending on the format of this document.)

As expected the output is a tibble. A subtle but important note is in the
second line of the output: # Groups: RIAGENDR [2]. It may be impor-
tant at a later stage to use the dplyr function ungroup() to modify e.g. the
column name or the values within that column.

The highest cholesterol value is 545 and is for a person of gender code 1 in age
group G36TO65.

146 CHAPTER 10. DPLYR - DATA MANIPULATION

(See section 13.2.4 later to learn how these numbers were embedded within the
text automatically without copy/paste!)

10.7.2.1 Sorting / arranging

The Example2 is a summary table (in tibble / data frame format) and can be fur-
ther sorted with the arrange() function. For example to see a table with the
cholesterol levels:

Example2 %>%
select(RIAGENDR, AGEGROUP, maxTChol) %>%
arrange(-maxTChol) %>%
head(2)

A tibble: 2 x 3
Groups: RIAGENDR [2]
RIAGENDR AGEGROUP maxTChol

<dbl> <chr> <dbl>
1 1 G36TO65 545
2 2 G66TO79 358

10.7.3 Base RBar plot

This summary table can be used with the base R function barplot() to create a
representation of the mean cholesterol data. The default plot yields just gray bars
and not horizontal label. Here are examples plotted together on a single graph
that show the effect of some options.

As a reminder:

• las=2 is rotating the labels (seen in section 6.3.)

• col = RIAGENDR + 1 selects two of the nine colors in the base R color
palette (see colors in section 5.5.) Since RIAGENDR values are 1 and 2 the re-
sulting colors would be black and red which is not very appealing. Adding

10.7. GETTING IT ALL TOGETHER 147

+ 1will choose red and green. Other numbers will select the next colors in
the list.

• names.arg= specifies the source of the horizontal axis names displayed.

These commands use the with() function but could also be written with the $
method, for example with Example2$AGEGROUP.

par(mfrow = c(1,2))
Plain version
with(Example2,barplot(MeanTChol))
Add white/gray alternate colors, rotated horiz labels
with(Example2,barplot(MeanTChol,

col = RIAGENDR + 1,
names.arg=AGEGROUP, las =2))

0
50

10
0

15
0

20
0

G
0T

O
18

G
19

TO
35

G
36

TO
65

G
66

TO
79

G
80

G
0T

O
18

G
19

TO
35

G
36

TO
65

G
66

TO
79

G
80

0

50

100

150

200

par(mfrow = c(1,1))

Error bars? There are methods in base R to add error bars and various examples

148 CHAPTER 10. DPLYR - DATA MANIPULATION

can be found online. However, the methods are all quirky and the best is now to
use ggplot() to create such graphs.

10.7.4 ggplot2 versions

Example plots have been moved to section 11.2.

Chapter 11

ggplot2

Basic R has multiple, separate functions, each used for creating a specific type of
representation: boxplot, histogram, scatter plot etc. ggplot2 is an R package for
creating elegant data visualization using the conceptual philosophy that views a
plot as the assembly of different fundamental parts:

𝑃𝑙𝑜𝑡 = 𝐷𝑎𝑡𝑎 + 𝐴𝑒𝑠𝑡ℎ𝑒𝑡𝑖𝑐𝑠 + 𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑦

• Plot: the final graphics
• Data: tabular data in tibble or a data frame
• Aesthetics: Describe visual characteristics that represent data (position,

size, color, shape, transparency, fill, scales
• Geometry: defines the graphical representation: histogram, boxplot, scat-

ter plot. Defines the type of geometric objects that represent data (points,
lines, polygons.)

Each element is built as a layer based on a “grammar of graphics” all assembled
into a final plot.

The “grammar” contains more definitions for graphics elements

• coordinate system: e.g. Cartesian, polar, map projections
• geoms: describe type of geometric objects that represent data (points, lines,

149

150 CHAPTER 11. GGPLOT2

Figure 11.1: ggplot2 constructs graphs in layers using a grammar of graphics.

polygons
• aesthetics: describe visual characteristics that represent data (position,

size, color, shape, transparency, fill.)

• scales: for each aesthetic: log scales, color scales, size scales, shape scales.

• stats : describe statistical transformations that typically summarize data:
counts, means, medians, regression lines.

• facets: describe how data is split into subsets and displayed as multiple, sep-
arate small graphs.

• Theme: controls appearance of non-data elements

Excerpts from Hadley Wickham’s “ggplot2: Elegant Graphics for Data
Analysis” (Wickham and Sievert (2016).) (The most revised version of the
book is also available free online: ggplot2-book.org/)

https://ggplot2-book.org/

11.1. TUTORIALS 151

ggplot2 is an R package for producing statistical, or data, graphics, but it is un-
like most other graphics packages because it has a deep underlying grammar. This
grammar, based on the Grammar of Graphics (Wilkinson, 2005), is made up of a
set of independent components that can be composed in many different ways. This
makes ggplot2 very powerful because you are not limited to a set of pre-specified
graphics, but you can create new graphics that are precisely tailored for your prob-
lem.

Without the grammar, there is no underlying theory, so most graphics packages are
just a big collection of special cases.

In his 2017 presentation Hadley Wickham mentions thatggplot was created be-
fore Tidyverse and lacks the Tidyverse philosophy on the ideas of distinguishing
and separating command (action) and query (computation) functions.(See refer-
ences in 8.) However it is well integrated within the Tidyverse and can be placed
at the end of a %>% pipeline as the last command.

11.1 Tutorials

There are many tutorials online to learn how to use ggplot. See Appendix G for a
table of just a few that seem useful based on the number of examples with ggplot
code. There are many more to be found with a simple web search.

Readers are encouraged to learn how to use ggplot2() on some of the
provided links in Appendix G before continuing with the examples in the
next section 11.2.

One suggestion is The Complete ggplot2 Tutorial1 split over multiple documents.

IMPORTANT CONSIDERATION: Regardless of the chosen online tutorial,

1http://r-statistics.co/Complete-Ggplot2-Tutorial-Part1-With-R-Code.html

http://r-statistics.co/Complete-Ggplot2-Tutorial-Part1-With-R-Code.html
http://r-statistics.co/Complete-Ggplot2-Tutorial-Part1-With-R-Code.html

152 CHAPTER 11. GGPLOT2

your data may not be in the same shape (rows/columns) or have the same
attributes (numerical, continuous, categorical) that may make converting
online examples to fit your data challenging and frustrating. Being aware
of that fact may certainly help!

If the data you are working with is not “tidy” watching the lesson on the
tidyr package might be helpful - see data wrangling section 9.

Perseverance is always rewarded.

A personal example:

• A bar chart can be created by two types of geom: geom_bar() and
geom_col(). This simple knowledge can save you hours of frustration
(see help with ?geom_bar().)

• Categorical variables are usually recognized automatically, but numerical
and continuous variables have to be “made” into categories (or “levels”) by
using as.factor() but in some cases as.character() might also work
depending on the variable in question.

11.2 ggplot2 using dplyr chapter results

The dplyr chapter ended with the creation putting together a pipeline to create
a summary data table. The story will continue here as that chapter ended.

11.2.1 Barplot with qplot / ggplot

Splitting the pipeline above is most useful for using qplot or ggpolot.

Example 2 pipeline at midpoint before summarization, saved in object Mid. It is
the same code as above but stopped where the midpoint was suggested.

Mid <- Master4 %>%
select columns

11.2. GGPLOT2 USING DPLYR CHAPTER RESULTS 153

select(SEQN, RIAGENDR, RIDAGEYR, LBXMFOS, URXUCR, LBXTC) %>%
fitler all rows to remove NAs
drop_na() %>%
Creatinine adjustment
mutate (RATIO = (LBXMFOS/URXUCR)*10^-4) %>%
categorize ages in 5 groups:
Children: G0TO18, younger adults: G19TO35,
and older adults: G36TO65, seniors: G66TO79,
and 80 and older: G80.
mutate(AGEGROUP = ifelse(RIDAGEYR %in% 0:18, "G0TO18",

ifelse(RIDAGEYR %in% 19:35, "G19TO35",
ifelse(RIDAGEYR %in% 36:65, "G36TO65",

ifelse(RIDAGEYR %in% 66:79,
"G66TO79", "G80")))))

Below are some plot examples using Mid. The addition of facet_grid splits the
data “as a function of” (~) gender in RIAGENDR.

Qplot
qplot(AGEGROUP, data = Mid, geom="bar")

It would be useful to visualize based on gender, accomplished with the
facet_grid() function.

Qplot
qplot(AGEGROUP, data = Mid, geom="bar") +
facet_grid(~RIAGENDR)

To add color we need to use geom_bar instead of geom = "bar" so that we can
add an aesthetics (aes) request to color, as a factor of the values in RIAGENDR.

Qplot
qplot(x=AGEGROUP, data=Mid) +
facet_grid(~RIAGENDR) +
geom_bar(aes(fill = as.factor(RIAGENDR)))

154 CHAPTER 11. GGPLOT2

0

200

400

600

800

G0TO18 G19TO35 G36TO65 G66TO79 G80
AGEGROUP

Figure 11.2: Bar plot showing total count by age group without gener distinction.

A similar plot but with stacked bars can be achieved with ggplot.

We can avoid using as.factor that is necessary since RIAGENDR is coded as a
number that ggplot considers a numerical (perhaps continuous) rather than a
categorical variable. We could avoid this problem by “recoding” the values of 1 and
2 to words such as male and female or Men and Women on a short pipeline before
the plot is done. (Review recode() in section 10.6.)

Mid %>%
mutate(RIAGENDR =

recode(RIAGENDR,
`1` = "Men",
`2` = "Women")) %>%

ggplot(aes(x = AGEGROUP)) +
geom_bar(aes(fill = RIAGENDR))

11.2. GGPLOT2 USING DPLYR CHAPTER RESULTS 155

1 2

G0TO18 G19TO35G36TO65G66TO79 G80 G0TO18 G19TO35G36TO65G66TO79 G80

0

100

200

300

400

AGEGROUP

Figure 11.3: With facet_grid() the age distribution by gender is on two separate
graphs.

We now also have a better description, avoiding 1 and 2 as well as as.factor in
the legend.

A final touch could be to rename the column RIAGENDR to simply Gender and
AGEGROUP to Age group by using the rename() function (section 10.6.)

We can saved this in Mid2. Note the need of quote for Age group to take care of
the blank space.

Mid2 <- Mid %>%
mutate(RIAGENDR =

recode(RIAGENDR,
`1` = "Men",
`2` = "Women")) %>%

156 CHAPTER 11. GGPLOT2

1 2

G0TO18G19TO35G36TO65G66TO79G80 G0TO18G19TO35G36TO65G66TO79G80

0

100

200

300

400

AGEGROUP

as.factor(RIAGENDR)

1

2

Figure 11.4: With facet_grid() the age distribution by gender on two separate
graphs.

rename(Gender = RIAGENDR, "Age group" = AGEGROUP)

Warning: Using blank spaces in columns or in data in general is a source
of trouble.

Note that to use the Age group column in a ggplot command it is re-
quired to use backticks ` to have it considered a single entity in a similar
way that was used in the recode() function with numbers.

To have the bars side by side for each age group the additional position = op-
tion is introduced with option "dodge" (bars touch) or "dodge2" (white space
between bars.)

11.2. GGPLOT2 USING DPLYR CHAPTER RESULTS 157

0

200

400

600

800

G0TO18 G19TO35 G36TO65 G66TO79 G80
AGEGROUP

co
un

t RIAGENDR

Men

Women

Figure 11.5: Bar plot showng age group distribution by gender. Stack bars is the
default.

#
Mid2 %>% ggplot(aes(x = `Age group`)) +
geom_bar(aes(fill = Gender), position = "dodge2")

It is possible to combine options:

Mid2 %>%
ggplot(aes(x = `Age group`)) +
geom_bar(aes(fill = Gender), position = "dodge2") +
facet_wrap(~ `Age group`)

158 CHAPTER 11. GGPLOT2

0

100

200

300

400

G0TO18 G19TO35 G36TO65 G66TO79 G80
Age group

co
un

t Gender

Men

Women

Figure 11.6: Side by side bar of gender count by age group is possible with the
dodge or dodge2 options.

11.2.2 Error bars and meanTChol

Example derived from info at Plotting with ggplot: bar plots with error bars (See
also Appendix G.)

We need to use ungroup() as data were grouped when creating Example2. (Sec-
tion 10.7.2.)

Example2 %>%
ungroup to allow changes for mutate and rename

ungroup() %>%
mutate(RIAGENDR =

recode(RIAGENDR,
`1` = "Men",

http://environmentalcomputing.net/plotting-with-ggplot-bar-plots-with-error-bars/

11.2. GGPLOT2 USING DPLYR CHAPTER RESULTS 159

G66TO79 G80

G0TO18 G19TO35 G36TO65

G0TO18G19TO35G36TO65G66TO79G80 G0TO18G19TO35G36TO65G66TO79G80

G0TO18G19TO35G36TO65G66TO79G80

0

100

200

300

400

0

100

200

300

400

Age group

co
un

t Gender

Men

Women

Figure 11.7: Side by side in each facet.

`2` = "Women")) %>%
rename(Gender = RIAGENDR) %>%

start ggplot commands
ggplot(aes(AGEGROUP, MeanTChol)) +
geom_col(aes(fill = Gender)) +
geom_errorbar(aes(ymin = MeanTChol - sdTChol,

ymax = MeanTChol + sdTChol),
width=0.3) +

facet_wrap(~Gender) +
labs(y="Mean Total Cholesterol ± s.d. (mg/dL)", x = "Age by group")

160 CHAPTER 11. GGPLOT2

Men Women

G0TO18G19TO35G36TO65G66TO79 G80 G0TO18G19TO35G36TO65G66TO79 G80

0

50

100

150

200

250

Age by group

M
ea

n
To

ta
l C

ho
le

st
er

ol
 ±

 s
.d

. (
m

g/
dL

)

Gender

Men

Women

Chapter 12

Using NHANES weights

Using weights

An excellent demonstration of incorporating NHANES provided weights
as a commented R code page is available on this blog post: How to Use Sur-
vey Weights in R1 by Mike Burke.

The code has a few base R commands but most of the code is a perfect demon-
stration of the usefulness of the dplyr package and how to combine commands
in streams on small pipelines. It is also worth noting how the comments within
the code facilitates the understanding of the successive steps.

The code contains all the relevant and necessary information, including the ac-
tivation of packages with the library() function. If all packages are already
installed the code can be “Copied/Pasted” in its entirety and proceed without er-
rors.

To review the code we’ll cut it in smaller portion and perhaps add a few com-
mands the check the content or status of the R objects that are defined along the
way.

161

https://stylizeddata.com/how-to-use-survey-weights-in-r/
https://stylizeddata.com/how-to-use-survey-weights-in-r/

162 CHAPTER 12. USING NHANES WEIGHTS

12.1 Header comments and packages

The top of the code contains well defined titles for each section informing the
purpose of the program and the needed packages.

When it is run typical information on the loading of tidyverse is displayed.

##
General Information
##

This is an RScript for showing how to use survey weights with NHANES data. You
can find a narrative to this script at:
https://stylizeddata.com/how-to-use-survey-weights-in-r/

##
Packages
##

For reading SAS XPT file from NHANES website
haven::read_xpt

library(haven)

For using survey weights
survey::svydesign, svymean, svyglm

library(survey)

For data wrangling
#dplyr::select, mutate, select, recode

library(dplyr)

12.2. ACQUIRING NHANES DATA 163

12.2 Acquiring NHANES data

This chunk uses the haven package that has an easier method to download the
data directly from the web site without the need of an intermediate file as we saw
in section 6.2.1.

##
Load the dataset
##

Import NHANES demographic data

nhanesDemo <- read_xpt(url(
"https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/DEMO_I.XPT"))

12.3 Data wrangling: renaming and selecting data

This section of the code reorganizes and renames for easier understanding.

12.3.1 Renaming columns

This code portion has a goal to make the data easier for humans to understand by
changing the name of the data columns. It is performed with base R subsetting
with $ and overwriting the specified column. However, this could also have been
done with Tidyverse method by using the rename() function as we have seen in
section 10.6.

Only columns that will be selected in the next step are altered. The only data spec-
ification is forINDFMPIR others can be found on the DEMO_I web page and listed
below:

https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/DEMO_I.htm

164 CHAPTER 12. USING NHANES WEIGHTS

Table 12.1: Chosen columns and their description

Code Description range

INDFMPIR Ratio of family income to poverty 0 - 5
RIDAGEYR Age in years at screening 0 - 80
RIAGENDR Gender 1 -2
WTINT2YR Full sample 2 year interview weight 3293.928267 -

233755.84185
SDMVPSU Masked variance pseudo-PSU 1 to 2
SDMVSTRA Masked variance pseudo-stratum 119 to 133

NHANES data uses the method described in article Primary sampling unit (PSU)
masking and variance estimation in complex surveys available online2.

##
Data Wrangling
##

Copy and rename variables so they are more intuitive. "fpl" is percent
of the federal poverty level. It ranges from 0 to 5.

nhanesDemo$fpl <- nhanesDemo$INDFMPIR

nhanesDemo$age <- nhanesDemo$RIDAGEYR

nhanesDemo$gender <- nhanesDemo$RIAGENDR

nhanesDemo$persWeight <- nhanesDemo$WTINT2YR

nhanesDemo$psu <- nhanesDemo$SDMVPSU

nhanesDemo$strata <- nhanesDemo$SDMVSTRA

2https://www150.statcan.gc.ca/n1/en/catalogue/12-001-X200800210759

https://www150.statcan.gc.ca/n1/en/catalogue/12-001-X200800210759
https://www150.statcan.gc.ca/n1/en/catalogue/12-001-X200800210759
https://www150.statcan.gc.ca/n1/en/catalogue/12-001-X200800210759

12.3. DATA WRANGLING: RENAMING AND SELECTING DATA 165

12.3.2 Selecting columns

This chunck selects only the columns that are desired with a pipeline using the select()
function.

Since there are 47 variables, we will select only the variables we will use in
this analysis.

nhanesAnalysis <- nhanesDemo %>%
select(fpl,

age,
gender,
persWeight,
psu,
strata)

12.3.3 Changing variable status to a factor

We encountered this problem before (section 10.6) when we needed to convert a
variable from “continuous” to a “factor” so that the data would be seen as a “cat-
egory” with just a few “options”. Just changing Integer numbers to characters
could accomplish that.

Here the author chooses to keep the code as integers but change the value for
men from 1 to 0 and for women from 2 to 1. The cryptic L in 0L and 1L in the
code below is a special code that means “Long” and therefore does not represent
the letter L as a character but is a form of “coercion” “forcing” the number to be
an integer in its forms recorded by the computer.

What does Lmean?

There are multiple entries in Stack Overflow for this, including:

The author of this in R never explained why he chose the notation, but it is
shorter than as.integer(10), and more efficient as the coercion is done
at parse time.

166 CHAPTER 12. USING NHANES WEIGHTS

See more info in links:

– Clarification of L in R
– What’s the difference between 1L and 1?

Also in the R Language Definition book (R Core Team (2020b))3,4 it is
stated, in reference to the number 1 (as in: class(c(1)))

“Perhaps unexpectedly, the number returned from the expression 1 is a
numeric. In most cases, the difference between an integer and a numeric
value will be unimportant as R will do the right thing when using the num-
bers. There are, however, times when we would like to explicitly create
an integer value for a constant. We can do this by calling the function
as.integer() or using various other techniques. But perhaps the sim-
plest approach is to qualify our constant with the suffix character L.”

“We can use the L suffix to qualify any number with the intent of making
it an explicit integer.”

Finally, internally this is related also to the amount of memory (RAM) used
by the computer to hold an integer and that may depend if it is a 32 bit
or a 64 bit system. To know the larger Integer that R can hold can be
revealed by command .Machine$integer.max (starts with a dot.) For
a 32 bit computer this will be exactly 2147483647. Using 64 bit may
be extremely beneficial for very large dataset. A 64 bit version of R can
be downloaded from info at http://r.research.att.com/ or https://mac.r-
project.org/

Note that the first command mutating the gender column nhanesAnalysis is
in tidyverse format using the pipe, while the last command is in base R format.

Recode gender

nhanesAnalysis <- nhanesAnalysis %>%
mutate(gender = recode(gender, `1` = 0L,

`2` = 1L))

https://stackoverflow.com/questions/22191324/clarification-of-l-in-r
https://stackoverflow.com/questions/7014387/whats-the-difference-between-1l-and-1
http://r.research.att.com/
https://mac.r-project.org/
https://mac.r-project.org/

12.3. DATA WRANGLING: RENAMING AND SELECTING DATA 167

Convert "gender" to a factor variable. We need to do this so it isn't treated
as a continuous variable in our analyses

nhanesAnalysis$gender <- as.factor(nhanesAnalysis$gender)

At this point we can add commands to get a better understanding of the data
format and content. For example:

head(nhanesAnalysis$gender)

[1] 0 0 0 1 1 1
Levels: 0 1

class(nhanesAnalysis)

[1] "tbl_df" "tbl" "data.frame"

dim(nhanesAnalysis)

[1] 9971 6

str(nhanesAnalysis)

tibble [9,971 x 6] (S3: tbl_df/tbl/data.frame)
$ fpl : num [1:9971] 4.39 1.32 1.51 5 1.23 2.82 1.18 4.22 NA 2.08 ...
..- attr(*, "label")= chr "Ratio of family income to poverty"

$ age : num [1:9971] 62 53 78 56 42 72 11 4 1 22 ...
..- attr(*, "label")= chr "Age in years at screening"

$ gender : Factor w/ 2 levels "0","1": 1 1 1 2 2 2 2 1 1 1 ...
$ persWeight: num [1:9971] 134671 24329 12400 102718 17628 ...
..- attr(*, "label")= chr "Full sample 2 year interview weight"

$ psu : num [1:9971] 1 1 1 1 2 1 1 2 1 2 ...
..- attr(*, "label")= chr "Masked variance pseudo-PSU"

$ strata : num [1:9971] 125 125 131 131 126 128 120 124 119 128 ...
..- attr(*, "label")= chr "Masked variance pseudo-stratum"

168 CHAPTER 12. USING NHANES WEIGHTS

head(nhanesAnalysis)

A tibble: 6 x 6
fpl age gender persWeight psu strata

<dbl> <dbl> <fct> <dbl> <dbl> <dbl>
1 4.39 62 0 134671. 1 125
2 1.32 53 0 24329. 1 125
3 1.51 78 0 12400. 1 131
4 5 56 1 102718. 1 131
5 1.23 42 1 17628. 2 126
6 2.82 72 1 11252. 1 128

The gender assignment can be confusing as the values are still1 and2but the lev-
els are now0and1as shown in the short table showinggenderas<fct>meaning
factor, and as can be deciphered from the str() output for the gender line:

$ gender : Factor w/ 2 levels "0","1": 1 1 1 2 2 2 2 1 1 1 ...

12.3.4 Adding the weight information

##
Survey Weights
##

Here we use "svydesign" to assign the weights. We will use this new design
variable "nhanesDesign" when running our analyses.

nhanesDesign <- svydesign(id = ~psu,
strata = ~strata,
weights = ~persWeight,
nest = TRUE,
data = nhanesAnalysis)

12.3. DATA WRANGLING: RENAMING AND SELECTING DATA 169

Here we use "subset" to tell "nhanesDesign" that we want to only look at a
specific subpopulation (i.e., those age between 18-79 years). This is
important to do. If you don't do this and just restrict it in a different way
your estimates won't have correct SEs.

ageDesign <- subset(nhanesDesign, age > 17 &
age < 80)

We can printout the content of these:

nhanesDesign

Stratified 1 - level Cluster Sampling design (with replacement)
With (30) clusters.
svydesign(id = ~psu, strata = ~strata, weights = ~persWeight,

nest = TRUE, data = nhanesAnalysis)

ageDesign

Stratified 1 - level Cluster Sampling design (with replacement)
With (30) clusters.
subset(nhanesDesign, age > 17 & age < 80)

12.3.5 Statistics

##
Statistics
##

We will use "svymean" to calculate the population mean for age. The na.rm
argument "TRUE" excludes missing values from the calculation. We see that
the mean age is 45.648 and the standard error is 0.5131.

svymean(~age, ageDesign, na.rm = TRUE)

170 CHAPTER 12. USING NHANES WEIGHTS

mean SE
age 45.648 0.5131

Since gender is a factor variable, "svymean" will treat it as such and give us
the proportion of women. We see that men are 48.601% and woman are 51.399% of
the population in this age of 18 to 79.

svymean(~gender, ageDesign, na.rm = TRUE)

mean SE
gender0 0.48601 0.006
gender1 0.51399 0.006

Now we will run a general linear model (glm) with a gaussian link function.
We tell svyglm that nhanesAnalysis is the dataset to use and to apply the
"svydesign" object "ageDesign." I won't dive into the results here, but you
can see that age is positively correlated with FPL and that women are
predicted to have a lower FPL than men.

output <- svyglm(fpl ~ age +
gender,

family = gaussian(),
data = nhanesAnalysis,
design = ageDesign)

We can add the following to show output results:

output

Stratified 1 - level Cluster Sampling design (with replacement)
With (30) clusters.
subset(nhanesDesign, age > 17 & age < 80)

Call: svyglm(formula = fpl ~ age + gender, design = ageDesign, family = gaussian(),
data = nhanesAnalysis)

Coefficients:

12.3. DATA WRANGLING: RENAMING AND SELECTING DATA 171

(Intercept) age gender1
2.44519 0.01488 -0.21055

Degrees of Freedom: 5013 Total (i.e. Null); 13 Residual
(602 observations deleted due to missingness)

Null Deviance: 14170
Residual Deviance: 13820 AIC: 20920

In the comments it is said “… you can see that age is positively correlated with
FPL and that women are predicted to have a lower FPL than men.”

The definition of the functionsvyglm() in help is: “Fit a generalised linear model
to data from a complex survey design, with inverse-probability weighting and
design-based standard errors.”

The final data are located in output$coefficients:

output$coefficients

(Intercept) age gender1
2.4451935 0.0148763 -0.2105470

Most likely from the conclusion the following is done:

1. Compute the regression line for age
2. Compute a correlation coefficient for gender

From the printed results we can see:

• The intercept 2.4451935 is where the regression line crosses the vertical 𝑦
axis.

• The slope defining the relationship with age is 0.0148763

• The third item would be the correlation coefficient with gender, and is neg-
ative at -0.210547. Since it is labeled as gender1 that should mean “gen-
der level 1” which is the code for women after the changes added with the
mutate() function to change the label numbers.

172 CHAPTER 12. USING NHANES WEIGHTS

Chapter 13

Markdown and Reproducible
research

Reproducible research is becoming a vast field. This chapter is to provide a flavor
of what’s possible in creating a “live” document for data analysis.

There are many sources online, here is one from a 6-hour workshop from the
“Monash Bioinformatics Platform”: Reproducible Research in R1 (2019-07-25).

What is Reproducible Research?a

Research is considered to be reproducible when the exact results can be repro-
duced if given access to the original data, software, or code. Reproducible research
is sometimes known as reproducibility, reproducible statistical analysis, repro-
ducible data analysis, reproducible reporting, and literate programming.
Literate programming is simply telling a “story” with the embedded code
which is “rendered” in the final output.

ahttps://www.displayr.com/what-is-reproducible-research/

1https://monashdatafluency.github.io/r-rep-res/

173

https://monashdatafluency.github.io/r-rep-res/
https://en.wikipedia.org/wiki/Literate_programming
https://www.displayr.com/what-is-reproducible-research/
https://monashdatafluency.github.io/r-rep-res/

174 CHAPTER 13. MARKDOWN AND REPRODUCIBLE RESEARCH

Figure 13.1: Reproducible research is more about computer analysis, replicable
research is about reproducing research results.

Reproducible research usually refers more to the analysis of the data, while research
that is replicable is the idea that research results can be reproduced by independent
researchers using different methods.

Table 13.1: A course on reproducible research using R

Name Course Web site

R for Reproducible Research https://annakrystalli.me/rrresearch/index.html

https://annakrystalli.me/rrresearch/index.html

13.1. MARKDOWN 175

13.1 Markdown

What is markdown? Markdown is a lightweight markup lan-
guage with plain-text-formatting syntax, created in 2004 by John Gru-
ber with Aaron Swartz.a (Note the play on words between markdown and
markup!)
The philosophy or markdown is described by John Gruber on his web site:
“DARING FIREBALL”b.

ahttps://en.wikipedia.org/wiki/Markdown
bhttps://daringfireball.net/projects/markdown/

At its origin, John Gruber created markdown to easily create HTML pages with an
easy syntax. The markdown document is a plain text file that in the end is used
as a source to create an HTML page.

This very document is being written with the help of markdown!

A web page is written un HTML or “Hyper Text Markup Language” and its syntax
requires a lot of characters to specify a format. The name “markdown” is a play
on word and its syntax is very easy. Here is an example to make a word bold:

• HTML: word
• Markdown: **word**

Another more remarkable example would be the “heading” as it is used on the
web but also in MSWord as a section title:

• HTML: <h1>heading1</h1> -> requires 9 characters on both sides of
heading1

• Markdown: # heading1 -> requires a single character!

The result is that text files that are formatted in markdown can be read “as is” very
easily, while a page of HTML code would be much harder for a human to read “as

https://daringfireball.net/projects/markdown/
https://en.wikipedia.org/wiki/Markdown
https://daringfireball.net/projects/markdown/

176 CHAPTER 13. MARKDOWN AND REPRODUCIBLE RESEARCH

is”. In fact that was a key design goal: readability.

13.1.1 Markdown syntax

The basic syntax is illustrated on this page: www.markdownguide.org/basic-
syntax/2

The basic markdown syntax can be summarized in a short table from https://
www.markdownguide.org/cheat-sheet/3.

Table 13.2: Basic Markdown Syntax

Element Markdown Syntax

Heading # H1 ## H2 ### H3
Bold **bold text**
Italic *italicized text*
Blockquote > blockquote
Ordered List 1. First item 2. Second item 3. Third item
Unordered List - First item - Second item - Third item
Code code
Horizontal Rule - - -
Link [title](https://www.example.com)
Image ![alt text](image.jpg)

Extended syntax can be useful for making tables (such as the table describing
basic markdown) or footnotes and listed further down on the same guide page.

Basic and most extended markdown syntax are included in RStudio.

2https://www.markdownguide.org/basic-syntax/
3https://www.markdownguide.org/cheat-sheet/

https://www.markdownguide.org/basic-syntax/
https://www.markdownguide.org/basic-syntax/
https://www.markdownguide.org/cheat-sheet/
https://www.markdownguide.org/cheat-sheet/
https://www.markdownguide.org/basic-syntax/
https://www.markdownguide.org/cheat-sheet/

13.2. R MARKDOWN MAGIC 177

Interactive tutorial

One easy way to learn how to use markdown is to go through the very easy
interactive exercises dynamically rendered in the free interactive tutorial
at www.markdowntutorial.com/ available in English, Spanish, French,
Korean, and Japanese.

In turn RStudio created a method to add code within a markdown file which is
then called an “R markdown” file.

Regular markdown can easily be learned from the above links, the next section will
provide details on R markdown.

13.2 R markdown magic

Before experiencing the Magic of R markdown it is necessary to have an
even rudimentary understanding of “plain” markdown - see previous sec-
tion 13.1.1.

Markdown allows a document to be formatted easily but Rmarkdown provides the
means to create a dynamic document that makes it easy to maintain both the nar-
rative (text, story, information) and the analysis in the form of computer code
that is woven within the file and can automatically embed data, tables and even
plots and graphs automatically. Since this is all automated, if the original data is
changed, converting the Rmarkdown document once more to a final output for-
mat (HTML,PDF, MSWord) will recompute and update everything, literally with
one click!

This is a valuable tool in the context of Reproducible research as a paper could be
completely self-contained within an Rmarkdown document: the story, the anal-
ysis code, and the figures (automatically generated by the analysis code.)

https://www.markdowntutorial.com/

178 CHAPTER 13. MARKDOWN AND REPRODUCIBLE RESEARCH

The free online book R Markdown: The Definitive Guide4 by Yihui Xie, J. J.
Allaire, Garrett Grolemund (2020-04-26) should prove a very valuable ref-
erence.

See more resources in Appendix H.

13.2.1 Before your start

Some packages are needed to create output from R markdown documents
which you can install in advance, for example with:

install.packages(c("knitr", "rmarkdown", "markdown"))

However, the newest versions of RStudio will prompt you if you want to
install a package that is necessary but not yet installed.

The knitr package is used to transform the R markdown .Rmd file into
a beautifully rendered document in various formats. The knitr package
name reflects the “knitting together” (weaving together) the text and the
embedded literal programming code and at the same time makes things
look a lot more “neater.”

13.2.2 How to create an R markdown file

TASK: open an R markdown template

https://bookdown.org/yihui/rmarkdown/

13.2. R MARKDOWN MAGIC 179

To follow these exercises create a new R markdown file with the menu cas-
cade:

File -> New File -> R Markdown...

In the new window replace "Untitled" with a title for your document.
Keep HTML selected as the “Default output format”
Press OK
Save the file now (or later) and provide a name for the file.
The new file will have a filename extension of .Rmd

The top of the file will look something like this:

title: "Test1"
author: "My Name"
date: "7/22/2020"
output: html_document

WARNING! DO NOT TOUCH THIS SECTION YET!

This section is a special header that provides instructions on how to export
the final document (output: html_document) and can be changed with
further instructions. This is formatted in a simple language called YAML5.

The rest of the page is meant to write text with or without (regular) markdown
formatting, but also can contain R code that can be shown or hidden, executed or
inert. It is worth pointing out that RStudio supports many more languages that
just R and are called “engines” in that context6.

6Command names(knitr::knit_engines$get()) will print supported languages (‘en-
gines’). Install knitr package first.

180 CHAPTER 13. MARKDOWN AND REPRODUCIBLE RESEARCH

13.2.3 Adding R code

The whole purpose of an .Rmd file is to tell a story with markdown and perform
the analysis at the same time when it is rendered. This is accomplished by adding
R code “chunks” within the file that will be evaluated when the weaving/knitting
of the file output is done.

To add R code we can use the “Insert” button on Rstudio bar, or simply write the
code between special characters that specify that it is code and not just text in
this way:

```{r}
# Here goes the R code
V <- c(1:10)
```

A name can be given to the “chunk” and a various number of options that can
modify the results of what happens when the final document is knitted. For ex-
ample the code could be running but not shown in the final document by adding
echo = FALSE. (Complete chunk options list(PDF)7.) It is easier to see an exam-
ple:

title: "Tiny Rmd"
output: html_document

In R it is possible to tell a story and weave computer code
to perform an analysis at the same time by adding "chunks" of code.
This code will create a vector and take the log10 of each value

```{r mychunk, eval=TRUE}
# This chunk will be computed
V <- c(1:10)
log10(V)

```
7https://rstudio.com/wp-content/uploads/2015/03/rmarkdown-reference.pdf

https://rstudio.com/wp-content/uploads/2015/03/rmarkdown-reference.pdf
https://rstudio.com/wp-content/uploads/2015/03/rmarkdown-reference.pdf

13.2. R MARKDOWN MAGIC 181

The values are automatically printed

When the knit button is pressed the rendering in HTML will look like this:

In R it is possi ble to tell a story and weave computer code to perform an analysi s at the sa me time by adding
“chunks” of code. This code will create a vector and take the log10 of each value

The values are automatically printed

Figure 13.2: HTML output of Tiny Rmd as knit output.

Exercise

You can try to Copy/Paste the text for Tiny Rmd file above and paste it
within a new .Rmd file (details in section 13.2.2,) replacing all of the demo
content with the pasted text of Tiny Rmd. Then press the knit button and
see the result!

13.2.4 Very tiny Rmd file: Inline code

Here is one of the most useful and somewhat advanced ways of using R code to
avoid “Copy/Paste” of information that may be unstable and could change over
time. For example the size (length, dimensions, etc.) of the provided data for R
to analyze may be updated with new information.

Here is an example of a very small file that shows how R code can be embedded
within the text and rendered in the context of reporting.

182 CHAPTER 13. MARKDOWN AND REPRODUCIBLE RESEARCH

• The YAML is very minimal

• the first line prints out 5 letters from the English alphabet (LETTERS is pre-
defined in R.)

• The second line embeds two commands separated by a semi-colon ;
that first defines a vector of numbers, and then computes the sum of the
numbers.

• In both cases the results are shown in bold.

title: "Tinyest Rmd"
output: html_document

Some random letters: **`r sample(LETTERS, 5)`**

Let's make a vector and add all its numbers:
`r vec <- c(1:10); sum(vec)`.
Only the results will show on the final print.

Pressing the RStudio Knit button will convert this .Rmd file into an HTML doc-
ument.

Tinyest Rmd

Some random letters: O, A, G, U, L

Let’s make a vector and add all its numbers: 55 - but only the results will show on the final print.

Figure 13.3: HTML output for Tinyest R markdown conversion with Knit button.

Exercise: The story of vector V

You can read the “magical story of vector V” from the the text in Appendix

13.3. OTHER FORMATS 183

I that you can Copy/Paste into a new .Rmd file.

This is a way to learn by example about R code chunks and the very useful
inline R code.

The magic is perhaps in the story, but more importantly it is also the demon-
stration of weaving text and code together in a single rendered document.

13.3 Other formats

The two formats that should work by default are HTML and Word. Most people
would be interested in created a PDF but that requires the installation of a type-
setting engine called LATEX “LaTeX” (pronounced “lay tek.”) In the early days this
required the installation of software independent of RStudio that was heavy in
size in the multiple Gigabytes (most are 5Gb or more.)

TinyTex for PDF

Fortunately there is now a special package called TinyTex
that is much easier to install and much smaller in size at about 150Mb only.
Information on the package and installation instructions can be found on
yihui.org/tinytex/ (Yihui Xie is a software engineer at RStudio and author
of knitr and Tinytex among others.)

Optional Installation TinyTex

The tinytex R package (written as bold, lower case) is used to install TinyTeX,

https://yihui.org/tinytex/

184 CHAPTER 13. MARKDOWN AND REPRODUCIBLE RESEARCH

its distribution version of “Latex” LATEX (pronounce “la-tek.”)

The installation is simple and requires 2 easy steps:

1. install the tinytex package.

2. use tinytex to install the TinyTeX distribution.

Here are the 2 commands to accomplish this8 plus a third, commented command
to uninstall if necessary.

install.packages('tinytex')
tinytex::install_tinytex()
to uninstall TinyTeX, run tinytex::uninstall_tinytex()

13.4 A word on YAML

YAML is a language and therefore can be overwhelming, confusing and offer too
many “options” (as most computer languages do.)

However, as the language of the header of the.Rmd files there are just a few things
that are of real importance.

13.4.1 Limits

The header is limited by three dashes at the top and at the bottom. Beyond this
limit it become the realm of R markdown.

13.4.2 Indentation and White space

White space is part of YAML’s formatting. Unless otherwise indicated, newlines
indicate the end of a field.

8https://yihui.org/tinytex/

https://yihui.org/tinytex/

13.4. A WORD ON YAML 185

Indentations:
* used to structure a YAML document.
* only use white space, never Tabs.
* in .Rmd indentation is 0, 2 or 4 spaces exactly.

13.4.3 Automatic modifications

Parts of the YAML header may change automatically depending on actions. For
example, suddenly decided to knit a simple document to a new format will modify
the output statement.

title: "Tiny Rmd"
output: html_document

In the original version the keyword output: line contains a colon (:) followed
the expected document format.

After requesting a different format, the output will automatically be changed,
each time. The new output: line is now ending with a newline and the now
multiple formats are each on a separate line indented by exactly 2 spaces (not 1, 3,
or 4, or tab all of which would cause an error later.) The last document format
requested will always be the one shown on top in the first indented line, updated
each time the document is knitted.

title: "Tiny Rmd"
output:
word_document: default
html_document: default
pdf_document: default

186 CHAPTER 13. MARKDOWN AND REPRODUCIBLE RESEARCH

13.4.4 Quotes

Test should pruudently be placed within double quotes, for example title:
"Tiny Rmd" even though title: Tiny Rmd would also work. Adding the
quotes as it is done by default prevents text with special characters to cause an
error.

13.4.5 Date

When a new .Rmd file is created it is given the date true on that moment and
would not change later.

It is possible to use code so that the date is updated each time the document is
knitted into a final format. Here are options to format the date at that moment:

• date: "Last Updated:" `r Sys.Date()` "

• date: ' `r Sys.Date()` '

• date: " `r format(Sys.time(), '%d %B, %Y')` "

• date: " `r format(Sys.time(), '%Y, %B %d')` "

Which would result in the following formats:

• date: "Last Updated: 2024-06-12"
• date: '2024-06-12'
• date: "12 June, 2024"
• date: "2024, June 12"

13.4.6 YAML resources

For further reference see the online book R Markdown: The Definitive Guide that
details advanced options for YAML headers:

• HTML content: https://bookdown.org/yihui/rmarkdown/html-document.
html

https://bookdown.org/yihui/rmarkdown/
https://bookdown.org/yihui/rmarkdown/html-document.html
https://bookdown.org/yihui/rmarkdown/html-document.html

13.4. A WORD ON YAML 187

• PDF content: https://bookdown.org/yihui/rmarkdown/pdf-document.
html

• MSWord: https://bookdown.org/yihui/rmarkdown/word-document.html
• General output formats: https://bookdown.org/yihui/rmarkdown/output-

formats.html

An interesting way to see if your YAML header has any errors:

• YAML validator: http://www.yamllint.com/

https://bookdown.org/yihui/rmarkdown/pdf-document.html
https://bookdown.org/yihui/rmarkdown/pdf-document.html
https://bookdown.org/yihui/rmarkdown/word-document.html
https://bookdown.org/yihui/rmarkdown/output-formats.html
https://bookdown.org/yihui/rmarkdown/output-formats.html
http://www.yamllint.com/

188 CHAPTER 13. MARKDOWN AND REPRODUCIBLE RESEARCH

Chapter 14

Report-template

Here are a few suggestions to help in the writing of a “report” for the analysis of
your NHANES chemical data that can be created as an R markdown document
containing all of the report narrative (story,) analysis code (shown or hidden,)
graphs and illustrations.

A single file with most of the code from this chapter as a “template” can be found
online as a plain text file but with either .Rmd or .Rmd.txt filename extensions.
The content is identical in both files. Depending on the settings of your brownser
most likely the .txt version will appear within the browser. For just .Rmd it
may appear within the browser of be downloaded automatically in your default
Downloads folder.

Sample report template in R markdown for download:

– SampleReport.Rmd.txt1

– SampleReport.Rmd2

189

https://static-bcrf.biochem.wisc.edu/courses/templates/SampleReport.Rmd.txt
https://static-bcrf.biochem.wisc.edu/courses/templates/SampleReport.Rmd

190 CHAPTER 14. REPORT-TEMPLATE

14.1 Overall template format

The report should be in the R markdown format with a YAML header and a body
with markdown and R code. A minimal outline could be:

title: "NHANES report"
author: "your name"
output: html_document

Preface {-}

Some background on something if wanted. Or remove

Introduction

Some useful into.

Chemical info

The chemical studied and why

NHANES data

What is it, where to find

Download

In this section the download code an optionally be hidden

Selected data

14.2. YAML EXAMPLE 191

What are the columns of data to be used.

Analysis

Some kind of analysis. With R code shown or not.
May include tables, graphics etc.

Results

This may be a summary of some of the analysis

Conclusion

Is there a general conclusion that can be drawn from the analysis and the results?

14.2 YAML example

This part may be simple or more complex, for example requesting figure caption
or requesting the automatic creation of a table of contents with a specified num-
ber of levels.

For HTML the table can be “floating” and shown on the left hand side for easier
navigation.

Here is an example YAML for all 3 major output formats with these options.

The line fontsize: 12pt is most useful for PDF output avoiding the 10pt de-
fault.

192 CHAPTER 14. REPORT-TEMPLATE

title: "NHANES Report Example"
author: "Your Name Here"
date: " 12 June, 2024 "
output:
word_document:
toc: true
toc_depth: 2
fig_caption: true

pdf_document:
toc: true
toc_depth: 2
fig_caption: true
number_sections: true

html_document:
toc: true
toc_depth: 2
toc_float: true
fig_caption: true
number_sections: true

fontsize: 12pt

14.3 General chunk options

The default Rmarkdown template in RStudio automatically adds this general op-
tion chunk that can be expanded. For example, to make allR code hidden change
echo = TRUE to FALSE.

The code in these options apply to all code in the document but can be overridden
by placing the opposite or desired option within the individual {r} tags in each
chunk.

14.4. PREAMBLE, PREFACE AND INTRODUCTION 193

```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```

14.4 Preamble, Preface and Introduction

“Preamble” or a “Preface” are often optional but usually not numbered as the rest
of the sections. To prevent numbering we add {-} so that the numbering would
start at the next heading tag # for example for # Introduction.

14.5 Activating packages

It may be useful to activate some packages at the beginning to make sure they are
“up” for later. Hiding the code is useful for a generic report. The default RStu-
dio options of echo=FALSE and warning=FALSE are not enough to suppress all
messages. The following code should load tidyverse quietly:

```{r eval=TRUE, echo=FALSE, warning=FALSE}
# Load quietly here and add a code below with eval=FALSE
options(tidyverse.quiet = TRUE)
library(tidyverse)
```

14.6 Live web links

NHANES or other web references can be created as “live” links in all document
types by using the format[Name in Square brackets](http://web.site.address.here)

For example the link NHANES web site was written as:
[NHANES web site](https://www.cdc.gov/nchs/nhanes/).

https://www.cdc.gov/nchs/nhanes/

194 CHAPTER 14. REPORT-TEMPLATE

14.7 Embedding graphs

Graphs can be embedded with optional legends. The age distribution histogram
without showing R code. Since age ranges from 0 to 80 there are 81 “slots” all
represented individually by specifying breaks = 81. Alignment can be speci-
fied. Optionally width and height are added and expressed in inches by adding
fig.width=7, fig.height=5.

```{r echo = FALSE, fig.cap="Histogram of age distribution", fig.align='center'}
# R code example:
with(nhanesDemo , hist(RIDAGEYR, breaks = 81))
```

14.8 Inline code

Inline code is the secret that can help make your report precise and useful as it allows
you to access and print information in the report that you do not have to know and most
of all that is not necessary to copy/paste.

Inline code can be fancy and contain more than just a simple computation such as `r
1+1`. Indeed it can even be a pipeleline as shown in this example:

There are `r dim(nhanesDemo)[1]` observation for `r select(nhanesDemo,
RIDAGEYR) %>% filter(RIDAGEYR < 18) %>% count()` children participants
less than 18, `r select(nhanesDemo, RIDAGEYR) %>% filter(RIDAGEYR >
18 & RIDAGEYR < 80) %>% count()` adult participants between 18 and 79
and `r select(nhanesDemo, RIDAGEYR) %>% filter(RIDAGEYR >= 80) %>%
count()` adults over the age of 80.

This will be rendered in the final text as:
There are 9971 observation for 3979 children participants less than 18, 5478 adult
participants between 18 and 79 and 376 adults over the age of 80.

14.9. MATH FORMULA 195

14.9 Math formula
Examples of math formulas can be found at:

• Mathematics in R Markdown R Pruim3 and

• An Example R Markdown4

One $ sign keep the formula in line.

Two $$ make the formula displayed on a different line. For example:

The creatinine adjustment requires a division and a multiplication by 10−4.

The final formula is

𝑟𝑎𝑡𝑖𝑜 = 𝐴𝑛𝑎𝑙𝑦𝑡𝑒
𝐶𝑟𝑒𝑎𝑡𝑖𝑛𝑖𝑛𝑒 ∗ 10−4

14.10 Addendum
In a technical report is it customary to also report how your R session was at the moment
of computation. This is accomplished by adding the command sessionInfo().

In this example the eval=FALSE makes that the code is not run. Update as needed de-
pending on the type of report that you write and who it is for.

```{r eval=FALSE}
sessionInfo()
```

3https://www.calvin.edu/~rpruim/courses/s341/S17/from-class/MathinRmd.html
4http://www.math.mcgill.ca/yyang/regression/RMarkdown/example.html

https://www.calvin.edu/~rpruim/courses/s341/S17/from-class/MathinRmd.html
http://www.math.mcgill.ca/yyang/regression/RMarkdown/example.html
https://www.calvin.edu/~rpruim/courses/s341/S17/from-class/MathinRmd.html
http://www.math.mcgill.ca/yyang/regression/RMarkdown/example.html

196 CHAPTER 14. REPORT-TEMPLATE

Chapter 15

Report resources

Here are a few useful resources that can be useful when creating a report.

15.1 Illustrations
It is on occasion desirable to add an illustration to a report that may either highlight an
idea or a concept. However, it is not always possible to use just any image found on the
Internet due to copyright issues.

The following web sites provide free images, illustrations, line art at no charge and with-
out the need of citation. In fact many illustrations were used from one of these in this
document. Illustrations are marked

• Free to use.
• No attribution required.

Table 15.1: Free online images and illustrations

Name Web site

Pixabay https://pixabay.com/
Pexels https://www.pexels.com/

197

https://pixabay.com/
https://www.pexels.com/

198 CHAPTER 15. REPORT RESOURCES

15.1.1 Adding and sizing images

Images can be too large and especially for HTML smaller physical and file sizes are de-
sirable and in that case it is better to use an image editor to reduce the file size to start
with.

The standard markdown code to add an image in .png, .gif, or .jpg format is simple,
for example using the image myimage.png in the current directory or mydir directory.
The square bracket can be left empty or can contain “Alt text” which is shown in the web
browser if the mouse is “hovered” over the included image.

•
•
• ![Alt text here](myimage.png)

By default this notation will present the image “as it is” in its dimensions and there is no
figure legend possible.

Fortunately it is possible to control the width (only but the height is deduced) by adding
a specification in pixels inside curly brackets connected to the last parenthesis. For ex-
ample:

• {width=100px}

However, in R markdown it may be best to use the knitr::include_graphics() func-
tion. For example:

```{r echo=FALSE, fig.cap="Caption here"}
### Include image name
knitr::include_graphics("images/myimage.png")
```

The size can also be modified as a function of the output with the out.width = option
as shown:

```{r echo=FALSE, fig.cap="Caption here"}
### Include image name
knitr::include_graphics("images/myimage.png", out.width = if (knitr::is_html_output()) '65%' else '100%')
```


15.2. MARKDOWN TABLES 199

out.width = if (knitr::is_html_output()) ‘65%’ else ‘100%’

15.2 Markdown tables
Creating tables in markdown is not very difficult but it can be time consuming if the table
is a bit complicated.

Tableconvert offers conversion between various table formats from files or pasted text.

Table Generator can create empty table to fill.

Table 15.2: Table format conversions inclusing Excel and mark-
down.

Name Web site

Table convert tableconvert.com
Tables Generator tablesgenerator.com

https://tableconvert.com/
https://www.tablesgenerator.com/markdown_tables
https://tableconvert.com/
https://www.tablesgenerator.com/markdown_tables

200 CHAPTER 15. REPORT RESOURCES

Appendix A

The story of R

Note: appendices are labeled with letters.

A very complete history of R was written by Roger D. Peng that includes a history of its
ancestors S and S-Plus and available on the web version1 of his book (Peng (2016)) as
well as a 16min video2 detailing the creation of S and then R.

S is a statistical programming language developed primarily by John Chambers and (in
earlier versions) Rick Becker and Allan Wilks of Bell Laboratories. The aim of the lan-
guage, as expressed by John Chambers, is “to turn ideas into software, quickly and faithfully”.

R is a programming language and free software environment for statistical computing
and graphics.R was developed by Ross Ihaka and Robert Gentleman. The reoprted their
experience developing R in 1996 (Ihaka and Gentleman (1996).)

1https://bookdown.org/rdpeng/rprogdatascience/history-and-overview-of-r.html
2https://youtu.be/STihTnVSZnI

201

https://youtu.be/STihTnVSZnI
https://en.wikipedia.org/wiki/S_(programming_language)
https://en.wikipedia.org/wiki/John_Chambers_(statistician)
https://en.wikipedia.org/wiki/Bell_Labs
https://en.wikipedia.org/wiki/R_(programming_language)
https://en.wikipedia.org/wiki/Ross_Ihaka
https://en.wikipedia.org/wiki/Robert_Gentleman_(statistician)
https://bookdown.org/rdpeng/rprogdatascience/history-and-overview-of-r.html
https://youtu.be/STihTnVSZnI

202 APPENDIX A. THE STORY OF R

Appendix B

Simple math

It is assumed that students are familiar with basic mathematics and their related symbols
or arithmetic operators.

However, some symbols may be different. For example the multiplication symbol within
R is * rather than x or . when writing it by hand.

Here are a few reminders of mathematical operators and their symbols for arithmetic
and logical operations.

The first 3 minutes of this 7 minutes video Arithmetic, Rational, Logical Operators - Introduc-
tion to R Programming - Part 41 summarizes the tables below. (HTML viewer will see the
video embedded below.)

B.1 Arithmetic operators
Here is a table defining the arithmetic operators represented by the symbols used within
R.

These operators are used on numbers or groups of numbers.

1https://youtu.be/wX_ArwIiRxs

203

https://youtu.be/wX_ArwIiRxs

204 APPENDIX B. SIMPLE MATH

Table B.1: Arithmetic operators and their symbols in R

Operator Description

+ Addition
- Subtraction
* Multiplication
/ Division
^ or ^ Exponentiation
%% Modulo

Depending on the complexity of the calculation it may be necessary to use parenthesis ((
)) to separate values.

It is important to remember the notion of precedence as detailed below from Wikipedia.2

In mathematics and computer programming, the order of operations (or operator prece-
dence) is a collection of rules that reflect conventions about which procedures to perform
first in order to evaluate a given mathematical expression.*

The order is: Parentheses, Exponents, Multiplication, Division, Addition, Subtraction.
In the United States, the acronym PEMDAS is common*. (See Wiki reference for other
countries.)

Misinterpreting any of the above rules to mean “addition first, subtraction afterward”
would incorrectly evaluate the expression

10 − 3 + 2.

The correct value is 9 (not 5, as would be the case if you added the 3 and the 2 before
subtracting from the 10).

B.2 Boolean values
A Boolean value is either true or false. These values can be the result of a logical operator
(see below) or a statement within an R function, for example stating that there is (T) or

2https://en.wikipedia.org/wiki/Order_of_operations

https://en.wikipedia.org/wiki/Order_of_operations

B.3. RATIONAL OPERATORS 205

there isn’t (F) a header in a table of numbers.

Table B.2: Boolean values

Value Notation

true TRUE or T in uppercase
false FALSE or F in uppercase

B.3 Rational operators

Table B.3: Rational operators

Operator Description

< Less than
<= Less than or equal to
> Greater than
>= Greater than or equal to
== Exactly equal to
!= Not equal to

B.4 Logical operators
Logical operators can be used to create conditional statements as they result in Boolean
values of true or false.

The symbols used imply the boolean operators “AND”, “OR” and “NOT”.

Operator Description

x & y x AND y
x | y x OR y
!x NOT x
isTRUE(x) Test if x has Boolean value TRUE

206 APPENDIX B. SIMPLE MATH

Appendix C

Import NHANES sample code

The online NHANES tutorials provide the following sample code to import data into R.

• Sample code tutorial page page:
– https://wwwn.cdc.gov/nchs/nhanes/tutorials/SampleCode.aspx

• R code to import SAS .XPT transfer data files:
– https://wwwn.cdc.gov/nchs/data/tutorials/file_download_import_R.R

This code is reproduced below:
Code from page:
https://wwwn.cdc.gov/nchs/data/tutorials/file_download_import_R.R

###
Example code to download/import NHANES data files (SAS transport .XPT files) as a dataset
For R
###

Note to tutorial users: you must update some lines of code (e.g. file paths)
to run this code yourself. Search for comments labeled "TutorialUser"

Include Foreign Package To Read SAS Transport Files
library(foreign)

###
Example 1: import SAS transport file that is saved on your hard drive
###

First, download the NHANES 2015-2016 Demographics file and save it to your hard drive

207

https://wwwn.cdc.gov/nchs/nhanes/tutorials/SampleCode.aspx
https://wwwn.cdc.gov/nchs/data/tutorials/file_download_import_R.R

208 APPENDIX C. IMPORT NHANES SAMPLE CODE

from: https://wwwn.cdc.gov/nchs/nhanes/search/datapage.aspx?Component=Demographics&CycleBeginYear=2015
You may need to right-click the link to the data file and select "Save target as..."

Create data frame from saved XPT file
TutorialUser: update the file path here
for Windows users, be sure to change the slashes between directories to a forward slash / (as on Mac or Unix)
or to double backslashes \\

DEMO_I <- read.xport("C:\\NHANES\\DATA\\DEMO_I.xpt")
DEMO_I2 <- read.xport("C:/NHANES/DATA/DEMO_I.xpt")

this code with typical Windows single backslashes between directories will throw an error
#DEMO_I <- read.xport("C:\NHANES\DATA\DEMO_I.xpt")

save as an R data frame
TutorialUser: update the file path here to a directory where you want to save the data frame
saveRDS(DEMO_I, file="C:\\NHANES\\DATA\\DEMO_I.rds")

##
Example 2: Download and import the transport file through R
##

Download NHANES 2015-2016 to temporary file
download.file("https://wwwn.cdc.gov/nchs/nhanes/2015-2016/DEMO_I.XPT", tf <- tempfile(), mode="wb")

Create Data Frame From Temporary File
DEMO_I3 <- foreign::read.xport(tf)

save as an R data frame
TutorialUser: update the file path here to a directory where you want to save the data frame
saveRDS(DEMO_I3, file="C:\\NHANES\\DATA\\DEMO_I.rds")

Appendix D

Merge Downloads into a Master file

Examples for downloading and merging NHANES .XPT data files from the fol-
lowing data:

Documentation links:

• DEMO_I: https://wwwn.cdc.gov/nchs/nhanes/2015-2016/DEMO_I.htm
• BMI_I: https://wwwn.cdc.gov/nchs/nhanes/2015-2016/BMX_I.htm
• PFAS_I: https://wwwn.cdc.gov/nchs/nhanes/2015-2016/PFAS_I.htm
• TCHOL_I: https://wwwn.cdc.gov/nchs/nhanes/2015-2016/TCHOL_I.htm
• ALB_CR_I: https://wwwn.cdc.gov/nchs/nhanes/2015-2016/ALB_CR_I.htm

D.1 Download into R object with NHANES code

Downloaded data is saved in a temporary file in a temporary directory and tf
simply holds the name/path to that data. Example on a Mac:

> tf
[1] "/var/folders/zg/9hl9fx_n7b970gcj51t8tkq1xx62d5/T//RtmpL6j3Wp/file5d87195178e"

Download NHANES 2015-2016 to temporary file: DEMO_I
download.file(
"https://wwwn.cdc.gov/nchs/nhanes/2015-2016/DEMO_I.XPT",

209

https://wwwn.cdc.gov/nchs/nhanes/2015-2016/DEMO_I.htm
https://wwwn.cdc.gov/nchs/nhanes/2015-2016/BMX_I.htm
https://wwwn.cdc.gov/nchs/nhanes/2015-2016/PFAS_I.htm
https://wwwn.cdc.gov/nchs/nhanes/2015-2016/TCHOL_I.htm
https://wwwn.cdc.gov/nchs/nhanes/2015-2016/ALB_CR_I.htm

210 APPENDIX D. MERGE DOWNLOADS INTO A MASTER FILE

tf <- tempfile(), mode="wb")
Create Data Frame From Temporary File
DEMO_I <- foreign::read.xport(tf)
##
REPEAT For:
BMX_I
download.file(
"https://wwwn.cdc.gov/nchs/nhanes/2015-2016/BMX_I.XPT",
tf2 <- tempfile(), mode="wb")

BMX_I <- foreign::read.xport(tf2) # TMP file
PFAS_I
download.file(
"https://wwwn.cdc.gov/nchs/nhanes/2015-2016/PFAS_I.XPT",
tf3 <- tempfile(), mode="wb")

PFAS_I <- foreign::read.xport(tf3) # TMP file
TCHOL_I
download.file(
"https://wwwn.cdc.gov/nchs/nhanes/2015-2016/TCHOL_I.XPT",
tf4 <- tempfile(), mode="wb")

TCHOL_I <- foreign::read.xport(tf4) # TMP file
ALB_CR_I
download.file(
"https://wwwn.cdc.gov/nchs/nhanes/2015-2016/ALB_CR_I.XPT",
tf5 <- tempfile(), mode="wb")

ALB_CR_I <- foreign::read.xport(tf5) # TMP file

D.2 Combine files into Master

Use merge() function. The SEQN column is common to all and merge() will au-
tomatically identify it. all.x=TRUE will keep all rows and fill non existent data
with NA so that all data are kept.

D.3. SAVE/WRITE MASTER FILE TO DISK 211

Master1 <- merge(DEMO_I, BMX_I, all.x=TRUE)
Master2 <- merge(Master1, PFAS_I, all.x=TRUE)
Master3 <- merge(Master2, TCHOL_I, all.x=TRUE)
Master4 <- merge(Master3, ALB_CR_I, all.x=TRUE)

D.3 Save/Write Master file to disk

If available use write_csv() function (dplyr package) which is “twice as fast as
write.csv(), and never writes row names. For example to export the data as
.csv within the current directory:

library(dplyr)
write_csv(Master4, "Master4.csv")

Base R version:

write.csv(Master4, "Master4.csv")

D.4 Alternate download to R object with haven

Using the haven package the code may look and feel easier as it only requires one
line per file .

library(haven)
#
DEMO_I <- read_xpt(url(
"https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/DEMO_I.XPT"))

#
BMX_I <- read_xpt(url(
"https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/BMX_I.XPT"))

#
PFAS_I <- read_xpt(url(
"https://wwwn.cdc.gov/nchs/nhanes/2015-2016/PFAS_I.XPT"))

212 APPENDIX D. MERGE DOWNLOADS INTO A MASTER FILE

#
TCHOL_I <- read_xpt(url(
"https://wwwn.cdc.gov/nchs/nhanes/2015-2016/TCHOL_I.XPT"))

#
ALB_CR_I <- read_xpt(url(
"https://wwwn.cdc.gov/nchs/nhanes/2015-2016/ALB_CR_I.XPT"))

D.5 Download, save XPT files to hard drive

To just download the .XPT files on your hard drive:

download.file("https://wwwn.cdc.gov/nchs/nhanes/2015-2016/DEMO_I.XPT",
"DEMO_I.XPT")

download.file("https://wwwn.cdc.gov/nchs/nhanes/2015-2016/BMX_I.XPT",
"BMX_I.XPT")

download.file("https://wwwn.cdc.gov/nchs/nhanes/2015-2016/PFAS_I.XPT",
"PFAS_I.XPT")

download.file("https://wwwn.cdc.gov/nchs/nhanes/2015-2016/ALB_CR_I.XPT",
"ALB_CR_I.XPT")

download.file("https://wwwn.cdc.gov/nchs/nhanes/2015-2016/TCHOL_I.XPT",
"TCHOL_I.XPT")

Appendix E

PFAS_I codes

Source: web documentation at https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/
PFAS_I.htm

Table E.1: PFAS_I analysis code

Code Description

SEQN Respondent sequence number
WTSB2YR Subsample B weights
LBXPFDE Perfluorodecanoic acid (ng/mL)
LBDPFDEL Perfluorodecanoic acid Comment Code
LBXPFHS Perfluorohexane sulfonic acid (ng/mL)
LBDPFHSL Perfluorohexane sulfonic acid Comt Code
LBXMPAH 2-(N-methyl-PFOSA)acetic acid (ng/mL)
LBDMPAHL 2-(N-methyl-PFOSA) acetic acid Comt Code
LBXPFNA Perfluorononanoic acid (ng/mL)
LBDPFNAL Perfluorononanoic acid Comment Code
LBXPFUA Perfluoroundecanoic acid (ng/mL)
LBDPFUAL Perfluoroundecanoic acid Comment Code
LBXPFDO Perfluorododecanoic acid (ng/mL)
LBDPFDOL Perfluorododecanoic acid comment

213

https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/PFAS_I.htm
https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/PFAS_I.htm

214 APPENDIX E. PFAS_I CODES

Code Description

LBXNFOA n-perfluorooctanoic acid (ng/mL)
LBDNFOAL n-perfluorooctanoic acid Comment Code
LBXBFOA Br. perfluorooctanoic acid iso (ng/mL)
LBDBFOAL Br. perfluorooctanoic acid iso Comt Code
LBXNFOS n-perfluorooctane sulfonic acid (ng/mL)
LBDNFOSL n-perfluorooctane sulfonic Comt Code
LBXMFOS Sm-PFOS (ng/mL)
LBDMFOSL Sm-PFOS Comment Code

Appendix F

Perfluoroalkyl and polyfluoroalkyl

Table 1. From Buck et al. (2011): Examples of the correct and incorrect (or undesir-
able) uses of the proposed nomenclature for perfluoroalkyl and polyfluoroalkyl substances
(PFASs).

215

216 APPENDIX F. PERFLUOROALKYL AND POLYFLUOROALKYL

Table 1. Examples of the correct and incorrect (or undesirable) uses of the proposed nomenclature for perfluoroalkyl and polyfluoroalkyl
substances (PFASs)

Example

Example statements

rotcerrocnItcerroC undesirable

COOH

F F F F F F

F

F
F F F F F F F

COOH

F F F F F F

F

F
F H H F F F F

Both are PFASs, within the family of
perfluoroalkyl and polyfluoroalkyl
substances

Both are carboxylic acids

Both are:
– Perfluoroalkyl substances, chemicals, compounds
– Perfluorinated substances, chemicals, compounds
– Polyfluoroalkyl substances
– Polyfluorinated substances
– Fluorocarbons
– Perfluorocarbons
– Fluorinated substances, chemicals, compounds
– Perfluorochemicals
– Perfluorinated chemicals
Both contain fluorocarbons

COOH

F F F F F F

 F

 F
F F F F F F F

All H atoms on all C atoms in the
alkyl chain attached to the carboxylic
acid functional group are replaced
by F
This is a: PFAS, perfluoroalkyl acid
(PFAA), perfluoroalkyl carboxylic
acid (PFCA)
Specifically, this is perfluorooctanoic
acid, CAS number 335-67-1

This is a:
– Perfluorinated substance, chemical, compound
– Fluorinated substance, chemical, compound
– Fluorocarbon
– Perfluorocarbon

COOH

F F F F F F

F

F
F H H F F F F

The alkyl chain attached to the
carboxylic acid functional group is
polyfluorinated
This is a: PFAS, polyfluoroalkyl acid,
polyfluoroalkyl carboxylic acid
Specifically, this is
2,2,3,3,4,4,5,5,7,7,8,8,8- trideca-
fluorooctanoic acid

This is a:
– Polyfluorinated substance, chemical, compound
– Fluorinated substance, chemical, compound
– Perfluorinated substance, chemical, compound
A portion of this compound is perfluorinated

516 Integr Environ Assess Manag 7, 2011—RC Buck et al.

Figure F.1: proposed nomenclature for perfluoroalkyl and polyfluoroalkyl sub-
stances

Appendix G

ggplot2 tutorials online

Note: The “official” ggplot2 book is available online and contains tutorial materi-
als: ggplot2-book.org/)

Table G.1: ggplot2 tutorials online

Name Web site

Quick Introduction to
ggplot2

https://bookdown.org/agrogankaylor/quick-intro-
to-ggplot2/quick-intro-to-ggplot2.html

The Complete ggplot2
Tutorial

http://r-statistics.co/Complete-Ggplot2-Tutorial-
Part1-With-R-Code.html

Introduction to GGPlot2 https://www.datanovia.com/en/lessons/
introduction-to-ggplot2/

Data Visualisation with
ggplot2

https://datacarpentry.org/r-socialsci/04-
ggplot2/index.html

R graphics with ggplot2
workshop notes

http://tutorials.iq.harvard.edu/R/Rgraphics/
Rgraphics.html

Introduction to ggplot2 https://opr.princeton.edu/workshops/Downloads/
2015Jan_ggplot2Koffman.pdf

217

https://ggplot2-book.org/
https://bookdown.org/agrogankaylor/quick-intro-to-ggplot2/quick-intro-to-ggplot2.html
https://bookdown.org/agrogankaylor/quick-intro-to-ggplot2/quick-intro-to-ggplot2.html
http://r-statistics.co/Complete-Ggplot2-Tutorial-Part1-With-R-Code.html
http://r-statistics.co/Complete-Ggplot2-Tutorial-Part1-With-R-Code.html
https://www.datanovia.com/en/lessons/introduction-to-ggplot2/
https://www.datanovia.com/en/lessons/introduction-to-ggplot2/
https://datacarpentry.org/r-socialsci/04-ggplot2/index.html
https://datacarpentry.org/r-socialsci/04-ggplot2/index.html
http://tutorials.iq.harvard.edu/R/Rgraphics/Rgraphics.html
http://tutorials.iq.harvard.edu/R/Rgraphics/Rgraphics.html
https://opr.princeton.edu/workshops/Downloads/2015Jan_ggplot2Koffman.pdf
https://opr.princeton.edu/workshops/Downloads/2015Jan_ggplot2Koffman.pdf

218 APPENDIX G. GGPLOT2 TUTORIALS ONLINE

Specialized tutorials on bar charts:

Table G.2: Tutorials on bar graph

Name Web site

Grouped barchart -
ggplot2

https://www.r-graph-gallery.com/48-grouped-
barplot-with-ggplot2

Grouped barplot in R
with error bars

http://environmentalcomputing.net/plotting-with-
ggplot-bar-plots-with-error-bars/

Plotting with ggplot: bar
plots with error bars

http://environmentalcomputing.net/plotting-with-
ggplot-bar-plots-with-error-bars/

Tutorial: Turning a Table
into a Horizontal Bar
Graph using ggplot2

https://rstudio-pubs-static.s3.amazonaws.com/
4305_8df3611f69fa48c2ba6bbca9a8367895.html

8 tips to make better
barplots with ggplot2 in R

https://cmdlinetips.com/2019/10/barplots-with-
ggplot2-in-r/

Grouped, stacked and
percent stacked barplot
in base R

https://www.r-graph-gallery.com/211-basic-
grouped-or-stacked-barplot.htm

https://www.r-graph-gallery.com/48-grouped-barplot-with-ggplot2
https://www.r-graph-gallery.com/48-grouped-barplot-with-ggplot2
http://environmentalcomputing.net/plotting-with-ggplot-bar-plots-with-error-bars/
http://environmentalcomputing.net/plotting-with-ggplot-bar-plots-with-error-bars/
http://environmentalcomputing.net/plotting-with-ggplot-bar-plots-with-error-bars/
http://environmentalcomputing.net/plotting-with-ggplot-bar-plots-with-error-bars/
https://rstudio-pubs-static.s3.amazonaws.com/4305_8df3611f69fa48c2ba6bbca9a8367895.html
https://rstudio-pubs-static.s3.amazonaws.com/4305_8df3611f69fa48c2ba6bbca9a8367895.html
https://cmdlinetips.com/2019/10/barplots-with-ggplot2-in-r/
https://cmdlinetips.com/2019/10/barplots-with-ggplot2-in-r/
https://www.r-graph-gallery.com/211-basic-grouped-or-stacked-barplot.htm
https://www.r-graph-gallery.com/211-basic-grouped-or-stacked-barplot.htm

Appendix H

Rmarkdown resources

A web engine search will provide a lot of possible references for R markdown.
Here are a few that I found useful:

Table H.1: Rmarkdown tutorials online

Name Web site

Getting Used to R,
RStudio, and R Markdow
Chester Ismay and
Patrick C. Kennedy
2019-11-12

https://ismayc.github.io/rbasics-book/

R Markdown Quick Tour
- Overview (Video)

https://rmarkdown.rstudio.com/authoring_quick_
tour.html

Introduction to R
Markdown

https:
//rmarkdown.rstudio.com/articles_intro.html

Knitr with R Markdown https://kbroman.org/knitr_knutshell/pages/
Rmarkdown.html

R Markdown and
Publishing (R Cookbook,
2nd Edition)

https://rc2e.com/rmarkdown

219

https://ismayc.github.io/rbasics-book/
https://rmarkdown.rstudio.com/authoring_quick_tour.html
https://rmarkdown.rstudio.com/authoring_quick_tour.html
https://rmarkdown.rstudio.com/articles_intro.html
https://rmarkdown.rstudio.com/articles_intro.html
https://kbroman.org/knitr_knutshell/pages/Rmarkdown.html
https://kbroman.org/knitr_knutshell/pages/Rmarkdown.html
https://rc2e.com/rmarkdown

220 APPENDIX H. RMARKDOWN RESOURCES

Name Web site

Writing documents with
R Markdown

https://monashbioinformaticsplatform.github.io/
2017-11-16-open-science-
training/topics/rmarkdown.html

R markdown document https://mgimond.github.io/ES218/Misc01.html
R Markdown (for Data
Science)

https://r4ds.had.co.nz/r-markdown.html

Getting started in R
markdown

https://www.statsandr.com/blog/getting-started-
in-r-markdown/

Templates are also available online, for example:

Table H.2: Rmarkdown templates

Name Web site

R Markdown TEMPLATES https://rmarkdown.rstudio.com/gallery.html

https://monashbioinformaticsplatform.github.io/2017-11-16-open-science-training/topics/rmarkdown.html
https://monashbioinformaticsplatform.github.io/2017-11-16-open-science-training/topics/rmarkdown.html
https://monashbioinformaticsplatform.github.io/2017-11-16-open-science-training/topics/rmarkdown.html
https://mgimond.github.io/ES218/Misc01.html
https://r4ds.had.co.nz/r-markdown.html
https://www.statsandr.com/blog/getting-started-in-r-markdown/
https://www.statsandr.com/blog/getting-started-in-r-markdown/
https://rmarkdown.rstudio.com/gallery.html

Appendix I

The Story of Vector V: an R
markdown example

This is an example of R markdown text that can be cut and pasted in a new R
markdown document (section 13.2.2) and then knitted into an HTML or other
type of document. This illustrates the use of R code in chunks (shown or hidden)
and as inline commands.

Note: Depending on the format (HTML/PDF) of this document some elements
might have a background color. However, ALL these apparent parts constitute
the .Rmd file.

title: "The story of vector **V**"
output: html_document

`V` learns numbers

Once upon a time there was a vector named `V` that was feeling
empty and was trying to learn numbers from `0` through `9`. One
day `V` met the *magical* combine function `c()` that was able

221

222 APPENDIX I. THE STORY OF VECTOR V: AN R MARKDOWN EXAMPLE

to add the numbers ***inside*** `V`, like this:

```{r}
V <- c(1,2,3,4,5,6,7,8,9)
```

`V` was very happy, and `V` was now spending its time enumerating
the numbers: `r V`. Sometimes it would pick one at random:
`r sample(V, 1)` and it was pleased that it was not always the
same number coming up.

`V` wonders about itself

Wanting to know itself better `V` asked:

* what is my class? And the answer was: ``r class(V)``
* how long am I? And the answer came as ``r length(V)``

`V` wants more

But then `V` wanted more: it wanted to add these numbersbut not
in the open like this, it wanted to do that "in its head" so it
could be done like this: **`r sum(V)`** (*and the value will be
printed here directly as calculate by `R`.*)

`V` meets the Math Wizard

But how to describe that to *Math Wizards*?
`V` asked the beloved *fairy* friend *Equation*
who gave `V` the *magic* codes:

$$\sum_{n=1}^{9} n = sum(V)$$

223

which is still **`r sum(V)`**.

`V` in the land of vectorization

But `V` wanted more again... `V` wanted to be 10 times more.
So `V` went on a journey across the land to know what to do.
It was a long and arduous journey, but `V` ended in the
Land of Vectorization and there, `V` was augmented 100 times
to be like this: `r 100*V`. But it was cumbersome to feel
these big numbers and *division* helped one more time to
make it just 10 times smaller to be `r 10*(V)`

`V` and the mental picture

This time `V` wanted to have a mental "picture" of the numbers
and `V` could think of 2 ways, the `R` code had to be kept
secret so that the code would not be stolen:

```{r echo=FALSE, fig.height=3}
par(mfrow = c(1,2))
plot(V)
boxplot(V)
par(mfrow = c(1,1))
```

Conclusion

It is useful to have friends that help you, and `V` is very grateful
for the magical encounter with **`c()`** and other friends along the way.

224 APPENDIX I. THE STORY OF VECTOR V: AN R MARKDOWN EXAMPLE

About the authors

Jean-Yves Sgro, a senior scientist with years of experience in using and teaching
computer programs, creates, organizes and teaches hands on workshops.

Jean-Yves Sgro, a senior scientist with years of experience in using and teaching
computer programs, creates, organizes and teaches the workshops.

Jean-Yves has been at UW since 1986 after a Master in Physiology and a Ph.D. in
Cellular and Molecular Biology from Joseph Fourier University, Grenoble,
France, and researched at the European Molecular Biology Laboratory (EMBL)
where he already used large computers for sequence analysis.

In Madison, at the Institute for Molecular Virology (IMV) he continued develop-
ing computer expertise in addition to his wet-lab research – 3D molecular visual-
ization (virusworld), RNA-folding predictions, sequence and data analysis…

In 1996 he joined the UW Biotechnology Center to better help Campus biologists
analyze and visualize their data while continuing research at IMV until 2014 when
this part-time position was transferred to the Biochemistry Department where

225

https://www.univ-grenoble-alpes.fr/english/
https://www.embl.fr/
http://virology.wisc.edu/
http://www.virology.wisc.edu/virusworld
https://www.biotech.wisc.edu/
https://biochem.wisc.edu/

226 APPENDIX I. THE STORY OF VECTOR V: AN R MARKDOWN EXAMPLE

he organizes and teaches hands-on tutorials on molecular graphics, data analysis
as a support to the department personnel.

Hist tutorials are available on line from the The Biochemistry Computational Re-
search Facility (BCRF.)

Jean-Yves also volunteers as an instructor for the Carpentries global community
data science workshops.

https://bcrf.biochem.wisc.edu/
https://carpentries.org/instructors/
https://carpentries.org/

227

Summary: Kristen Malecki was Associate Professor in Population Health Sci-
ences1 and Director and PI of Survey of the Health of Wisconsin (SHOW)2

Her research interests are: Environmental health, epidemiology, survey research
methods, metabolic health and immune function, epigenetics, microbiome and
applied public health practice.

Bio: In June 2022 Dr. Kristen Malecki has joined the University of Chicago School
of Public Health (Twitter: @uicpublichealth) as the new director of the Divi-
sion of Environmental and Occupational Health Sciences.

Her current bio at UIC:

Kristen Malecki, PhD, MPH is Professor of Environmental and Occupational
Health Sciences (EOHS) at the University of Illinois at Chicago (UIC), School
of Public Health, where she also serves as the EOHS Division Director. She
has a PhD in Environmental Epidemiology and Health Policy and Masters
of Public Health from Johns Hopkins University Bloomberg School of Public
Health. She was recently appointed to the National Academies of Sciences
standing committee on the “Use of Emerging Science for Environmental Health
Decisions.” She uses a multi-omic approach to examine combined chemical (air
pollution, water pollution), physical and social stressors, and their influence
on adult chronic disease, aging and health disparities.) As a member of the
Molecular Environmental Toxicology Center, her transdisciplinary work uses

1(https://pophealth.wisc.edu/staff/malecki-kristen/)
2https://show.wisc.edu/

https://publichealth.uic.edu/profiles/malecki-kristen/
https://pophealth.wisc.edu/staff/malecki-kristen/
https://show.wisc.edu/

228 APPENDIX I. THE STORY OF VECTOR V: AN R MARKDOWN EXAMPLE

epigenetics, transcriptomics in both human and animals studies of the gut
microbiome and to identify interim biomarkers of exposure and response to
improve understanding of the biological mechanisms underlying persistent
health disparities.

She also serves as the Principal Investigator for a number of community-
academic partnerships and is committed to advancing urban and rural health
equity. She also maintains longstanding partnerships with colleagues at the
Wisconsin Department of Health Services which has facilitated a breadth of
applied public health initiatives. Before becoming an academic, she served as
the lead epidemiologist for the State of Wisconsin Environmental Public Health
Tracking Program. In these roles she gained extensive experience in leading
and managing multi-disciplinary teams of researchers, practitioners, and policy
makers in development of new approaches to addressing environmental and
occupational health challenges.

Previously, Dr. Kristen Malecki was an Associate Professor in the Department
of Population Health Sciences at the University of Wisconsin-Madison (Twitter:
@uwsmph.) Her previous UW-Madison bio stated*:

Dr. Malecki serves as the co-director for the Survey of the Health of Wiscon-
sin (SHOW), overseeing survey implementation efforts and ancillary study de-
velopment. She has been a leader in the development and evaluation of indi-
cators for environmental health risk assessment and policy. Dr. Malecki also
works to bridge applied public health practice with academic research focusing
on environmental health and health disparities using a social determinants of
health model. She recently served as Principal Investigator for the Wisconsin
Groundwater Coordinating Council project addressing vulnerability among pri-
vate well owners in Wisconsin. Her current research is also focused on develop-
ing models to examine combined chemical (air pollution, water pollution), phys-
ical and social stressors and influence on adult chronic disease, childhood devel-
opment and obesity. She is a member of the University of Wisconsin National In-
stitute for Environmental Health Breast Cancer and the Environment Research
Program (coordinating center). Her transdisciplinary work includes identifica-

229

tion of biomarkers of expression and response using epigenetics and transcrip-
tomics. She also serves as the Principal Investigator for a number of SHOW an-
cillary studies involving community-academic partnerships.

Before coming to the UW she served as the lead epidemiologist for the state
Environmental Public Health Tracking Program. In these roles she has gained
extensive experience in leading and managing multi-disciplinary teams of
researchers, practitioners, and policy makers in development of environmental
health surveillance and epidemiologic data for addressing chronic diseases and
disparities in the State of Wisconsin and the nation.

Her teaching interests and experience spans from environmental health to sur-
vey research methods and applied public health practice.

230 APPENDIX I. THE STORY OF VECTOR V: AN R MARKDOWN EXAMPLE

Acknowledgments

I.1 R packages used for the book

R base (R Core Team (2020b)) and other added packages

Book creation: Xie (2020a), Allaire et al. (2020), Xie (2020b).

Book template adapted from rstudio4edu-book:
* https://rstudio4edu.github.io/rstudio4edu-book/

Tidyverse: Wickham et al. (2019)

Data import: R Core Team (2020a), Wickham and Miller (2020)

I.2 Extra Icons used:

I.2.1 Exercise / Homework

Icon made by Prosymbols from Flaticon

• link: https://www.flaticon.com/free-icon/homework_748646

231

https://rstudio4edu.github.io/rstudio4edu-book/
https://www.flaticon.com/authors/prosymbols
ttps://www.flaticon.com/
https://www.flaticon.com/free-icon/homework_748646

232 APPENDIX I. THE STORY OF VECTOR V: AN R MARKDOWN EXAMPLE

I.2.2 Study at home:

Icon made from Icon Fonts is licensed by CC BY 3.0. Recolored version
by JYS.

• link: https://www.onlinewebfonts.com/icon/532202

Cover image: flowering cherry tree in anime landscape by Copilot-DALL-E3.

HTML header image from Pixabay.com author Bessi.

References may be placed here or may be found on each page when cited depending on the
format (HTML, PDF…) of this document.

http://www.onlinewebfonts.com/icon
https://creativecommons.org/licenses/by/3.0/
https://www.onlinewebfonts.com/icon/532202
https://pixabay.com/photos/mountains-alps-meadow-736886/
https://pixabay.com/users/bessi-909086/

Bibliography

Allaire, J., Xie, Y., McPherson, J., Luraschi, J., Ushey, K., Atkins, A., Wickham, H.,
Cheng, J., Chang, W., and Iannone, R. (2020). rmarkdown: Dynamic Documents
for R. R package version 2.1.

Beals, K. A. (2008). Nutrition and well-being a to z.

Buck, R. C., Franklin, J., Berger, U., Conder, J. M., Cousins, I. T., de Voogt, P.,
Jensen, A. A., Kannan, K., Mabury, S. A., and van Leeuwen, S. P. J. (2011). Per-
fluoroalkyl and polyfluoroalkyl substances in the environment: Terminology,
classification, and origins. Integrated Environmental Assessment and Manage-
ment, 7:513 – 541.

Chambers, J. M., Cleaveland, W. S., Keliner, B., and Tukey, P. A. (1985). Graphical
Methods for Data Analysis. Wadsworth (U.A.).

Ihaka, R. and Gentleman, R. (1996). R: A language for data analysis and graphics.
Journal of Computational and Graphical Statistics, 5(3):299–314.

of the Vice Provost, O. (2013). UW-Madison Strategic Diversity Update. Accessed:
7-29-2020.

Peng, R. D. (2016). R Programming for data science. Leanpub.

R Core Team (2020a). foreign: Read Data Stored by ’Minitab’, ’S’, ’SAS’, ’SPSS’, ’Stata’,
’Systat’, ’Weka’, ’dBase’, ... R package version 0.8-76.

R Core Team (2020b). R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria.

233

234 BIBLIOGRAPHY

Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R.,
Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T. L.,
Miller, E., Bache, S. M., Müller, K., Ooms, J., Robinson, D., Seidel, D. P., Spinu,
V., Takahashi, K., Vaughan, D., Wilke, C., Woo, K., and Yutani, H. (2019). Wel-
come to the tidyverse. Journal of Open Source Software, 4(43):1686.

Wickham, H. and Miller, E. (2020). haven: Import and Export ’SPSS’, ’Stata’ and ’SAS’
Files. R package version 2.3.1.

Wickham, H. and Sievert, C. (2016). ggplot2: elegant graphics for data analysis.
Springer.

Wilkinson, L. (2005). The Grammar of Graphics. Statistics and Computing.
Springer, 2nd edition.

Xie, Y. (2020a). bookdown: Authoring Books and Technical Documents with R Mark-
down. R package version 0.18.

Xie, Y. (2020b). knitr: A General-Purpose Package for Dynamic Report Generation in R.
R package version 1.28.

Index

airquality, 46
albumin, 107
alkyl, 110
analyte, 107
assignment operator

<-, 20
=, 20
R, 20

BMI
distribution, 111

boxplot, 52

cholesterol, 96
HDL, 96
LDL, 96
total, 96
triglycerides, 96

Classic R, 77
code chunk options, 192
code chunks

R markdown, 180
coefficients: linear regression, 114
comma delimited, 78
conditional statement, 40, 137
correlation factor

Pearson, 114

creatinine, 103
adjust. equation, 104
adjustment, 103, 104, 127
ALB_CR, 105
concentration, 104
corrected, 104
equation, 127
excreted, 104
lean body mass, 104
levels, 104
mg/dL, 107
ratio, 107, 108, 127
urine dilution, 103, 104
weight/volume, 107

cylinder, 121

data frame, 33
tibble, 123

data stream
., 125
data=., 125
pipe, 121

data wrangling, 129, 163
datasets

airquality, 46
R, 5
subsetting, 50

235

236 INDEX

decimal point
Europe, 78
USA, 78

dplyr
video course, 130

dynamic document, 173
computer code, 177
narrative, 177
woven, 177

equation
math notation, 195

error bars
sd, 160

Europe, 78

factor, 36, 67
file type

csv, 77
R, 14
Rmd, 179
tab, 78
txt, 78
XPT, 82

functions
abline(), 62, 115
arguments, 25
arrange(), 125, 146
as.factor(), 55
as.integer(), 165
as.numeric(), 73
barplot(), 146
boxplot(), 42
by_group(), 125

cbind(), 31
class(), 27, 28
colnames(), 34
colSums(), 48
cor(), 114
data.frame(), 33
dim(), 38, 48
download.file(), 81
drop_na(), 135, 152
expand.grid(), 37
filter(), 125, 133
formatC(), 143
getwd(), 28
ggarrange(), 69
ggplot(), 64
gl(), 36
head(), 47
help(), 29
hist(), 52
ifelse(), 40, 137
include_graphics(), 198
is.na(), 48
lapply(), 91
length(), 28
levels(), 56, 67
library(), 65
lm(), 61
log(), 88
log10(), 109
ls(), 27
matrix(), 30
mean(), 51
merge(), 99, 116, 118

INDEX 237

mutate(), 125
names(), 33
palette(), 54
par(), 41
plot(), 41, 58
qplot(), 64
rbind(), 31
read.csv(), 78
read.delim(), 78
read.table(), 78
read.xport(), 82
read_xpt(), 82, 163
recode(), 140, 155
rep(), 36
rnorm(), 38
row.names(), 35
rownames(), 34
sample(), 39
sd(), 143
select(), 125, 132
seq(), 35, 94
sequence(), 36
sessionInfo(), 195
set.seed(), 39
setwd(), 28, 61
stack(), 93
str(), 49
summarise(), 143
summarize(), 125
summary(), 49
summrise(), 125
svyglm(), 171
tail(), 47

ungroup(), 145
with(), 51
write.csv(), 118
write.table(), 78
write_csv(), 118

geom
., 125
boxplot, 69
ggplot2, 150
point, 72
smooth, 72

ggplot2
aes, 156
aesthetics, 150
facet_grid(), 153
facets, 150
geom, 150
geom_bar(), 152
geom_bar(aes), 153
geom_col(), 152
geom_errorbar(), 160
labs(), 160
ungroup(), 145

grammar of graphics
ggplot2, 149

graphics
bar plot, 152
barplot, 146
base R, 52
boxplot, 52
boxplot(), 42
error bars, 160

238 INDEX

ggplot(), 64
hist(), 52
par(), 41
plot(), 41, 58
qplot(), 64
scatter plot, 71
setwd(), 62

Grolemund, Garrett, 129
Gruber, John, 175

Hadley Wickham
tidyverse, 119

header
YAML, 179
YAML example, 191

histogram, 52
breaks, 90
densities, 90
frequencies, 90

HTML, 175

IF, 40
ifelse()

nested, 137
illustrations

free images, 197
impute, 61
inline code

R markdown, 183

jam, 21
jar, 19

knit
R markdown, 182

knitr
opts_chunk, 192

label, 67
LaTeX, 183
legend

qplot(), 73
LETTERS, 39, 182
level, 36
lierate programming, 173
linear model, 61
linear regression, 61

coefficients, 114
qplot(), 72

loess, 73
loess, 73

magic, 177, 183
magical, 91
Magritte, Rene, 123
markdown, 175

add image, 198
basic syntax, 176
extended syntax, 176
image size, 198
interactive tutorial, 177
markup, 175
R markdown, 177
readability, 176
source, 175
table convert, 199
table generator, 199
tables, 199
web link, 193

INDEX 239

math equation, 195
matrix, 30
MSWord, 175

New York, 46
NHANES

ALB_CR, 105
BMX, 111
combining data, 96
DEMO, 81
demographics, 81, 138
HDL, 96
import data, 79, 82
merging data, 96
PFAS, 80
SEQN, 84
subsetting, 98
TCHOL, 96
TRIGLY, 96
urine sample, 103

objects
LETTERS, 39
R, 24
user defined, 9
vector, 28

odd number columns, 94
omit columns, 88
Ozone, 51, 58

parameters
all.x, 118
breaks, 90
by.x, 106

by.y, 106
graphics, 41
las, 88
legend.position, 72
levels, 67
lwd, 62
mfrow, 41
month.abb, 67
names.arg, 147
ordered, 67
par(), 41
pch, 59
ylim, 86

pch, 59
Pearson

correlation factor, 114
PFAS

hydrophilic, 110
hydrophobic, 110
lipophobic, 110
ng/ml, 107
oleophobic, 110
partitioning, 110
Perfluoroalkyl, 80
Polyfluoroalkyl, 80

pipe, 121
data stream, 121
symbol, 121
Unix, 121

pipeline, 122
plot

characters, 59
geometric shapes, 59

240 INDEX

symbols, 59
programming

literate, 173

qplot
theme(), 68

qplot()
geom, 65
legend.position, 73
linear regression, 72
lm, 73
loess, 73
method, 73
scatter plot, 71

R
.Machine$integer.max, 166
arguments, 25
assignment operator, 20
base, 47, 78
base R, 52
Classic, 19
classic, 77
comments, 14
datasets(), 5
functions, 25
graphics, 52
L:integer coercion, 165
levels, 36
objects, 9, 19, 24
script, 13
workspace, 9

R markdown, 177
code chunk options, 192

code chunks, 180
convert, 182
echo=, 193
eval=, 193
example, 181, 221
graphic size, 198
inline code, 183, 194
knit, 182
magic, 177
math formula, 195
output formats, 183
report template, 189
tables, 199
warning=, 193

R package
dplyr, 125
foreign, 79
ggplot2, 64, 149
ggpubr, 69
haven, 82, 162
knitr, 178
magrittr, 123
survey, 162
tibble, 123
tidyr, 129
tidyverse, 64, 119
tinytex, 183

RAM, 9
ratio

computation, 136
creatinine, 107
mutate(), 136

report template

INDEX 241

R markdown, 189
reproducible research, 173
research

replicable, 174
reproducible, 173

RStudio
2017 conference, 119
console, 12
environment, 12
execute command, 15
files, 13
history, 12
organize data, 13
panes, 12
project, 13
source, 12
working directory, 16
workspace, 12

scatter plot, 58, 71
SEQN

unique individual, 96
Software instal.

Packages, 2
R, 2
RStudio, 2
TinyTex, 183

Star Trek, 124
statistics

generalised linear model, 171
mean, 51
quartile, 50
standard deviation, 143

weights, 161
story

vector V, 183
strawberry, 21
subsetting, 50, 85

[,], 50
$, 51

Swartz, Aaron, 175
Symbols

+, 68
„ 50
., 78, 125
.., 16
/, 29
:, 35
::, 82
<-, 20
?, 29
[], 50
#, 14
$, 51, 67
� � 54

tab delimited, 78
tables

markdown, 199
tabular data, 77
template

R markdown, 189
tidyverse

command, 122
dplyr, 125
philosophy, 120

242 INDEX

query, 122
tibble, 123
tidyverse.quiet, 125
Wickham, Hadley, 119

transfer mode
binary, 81

Tribble, 124
triglycerides, 96

USA, 78

variable
as.factor(), 152
categorical, 55
categories, 152
factor, 55
level, 55
levels, 152

vector, 28, 30
vector V

story, 183, 221
vectorisation, 29

web link
markdown, 193

Web links
CRAN, 18
NCHS, 3
NHANES, 3
NIEHS, 18
RStudio, 18

weights
statistics, 161

Wickham, Hadley, 119

working directory
getwd(), 28
RStudio, 16
setwd(), 28

workspace
R, 9
RStudio, 12

YAML
delimitation, 184
header, 179
header example, 191
indentation, 184
language, 184
resources, 186
validator, 187

	Preamble
	Learning goals
	Software used during this tutorial

	Introduction
	Software installation
	Installing R packages
	Datasets: NHANES
	NHANES 2015-2016

	Datasets: included in R

	How R works
	R is a software
	R is a language
	Classic R vs Tidyverse

	Working with R: objects and workspace

	Getting started
	Launch RStudio
	Organize with an RStudio project
	Creating an R script
	Script Editor
	Comments
	Executing commands

	Working directory

	Working with R
	Creating R objects
	Functions and their arguments
	Built-in functions
	list: ls()
	class()
	combine: c()
	length()
	Working directory: getwd() and setwd()

	Getting help
	Vectorisation
	More complex data
	Vectors
	Matrix
	Combining vectors to create a matrix

	Dataframes
	Dataframe manipulation

	Generating data
	Regular sequences
	Repeat and sequence functions:
	Levels: gl() and expand.grid()
	Random numbers

	Conditional statements
	Function ifelse()

	Simple graphics with plot()

	Working with tabular data in R
	Airquality dataset
	Exploring airquality
	Subsetting
	Base R Graphics exploration
	Boxplots
	Scatter plots
	Simple linear regression
	Fancier Graphics exploration
	Boxplots
	Scatter plots

	Importing data
	Importing from local files
	Downloading Nhanes data
	PFAS_I

	Exploring PFAS_I data
	PFAS_I boxplot
	PFAS_I histogram
	Fancier boxplot with qplot

	Merging data files
	Merge() function
	Merging demographics data

	Creatinine adjustment
	Creatinine data
	Downloading, merging PFAS and creatinine

	Analyte measurement units
	Reduced set
	Computing Analyte / Creatinine ratio
	Exposure - Outcome
	Illusions
	qplot version

	Creating a master data file

	Tidyverse: another R Universe
	Magrittr - pipe and pipelines
	Tibble
	dplyr - overview
	Demo 1: all together pipeline

	Intermission: data wrangling
	Part 3 here

	dplyr - data manipulation
	Selecting columns
	Filtering rows
	Arrange data
	mutating data
	Mutate with conditional statement

	Summarising and grouping data
	Recoding: string replacement
	Getting it all together
	Example 1: by gender
	Example 2: by gender and age
	Base R Bar plot
	ggplot2 versions

	ggplot2
	Tutorials
	ggplot2 using dplyr chapter results
	Barplot with qplot / ggplot
	Error bars and meanTChol

	Using NHANES weights
	Header comments and packages
	Acquiring NHANES data
	Data wrangling: renaming and selecting data
	Renaming columns
	Selecting columns
	Changing variable status to a factor
	Adding the weight information
	Statistics

	Markdown and Reproducible research
	Markdown
	Markdown syntax

	R markdown magic
	Before your start
	How to create an R markdown file
	Adding R code
	Very tiny Rmd file: Inline code

	Other formats
	A word on YAML
	Limits
	Indentation and White space
	Automatic modifications
	Quotes
	Date
	YAML resources

	Report-template
	Overall template format
	YAML example
	General chunk options
	Preamble, Preface and Introduction
	Activating packages
	Live web links
	Embedding graphs
	Inline code
	Math formula
	Addendum

	Report resources
	Illustrations
	Adding and sizing images

	Markdown tables

	Appendix
	The story of R
	Simple math
	Arithmetic operators
	Boolean values
	Rational operators
	Logical operators

	Import NHANES sample code
	Merge Downloads into a Master file
	Download into R object with NHANES code
	Combine files into Master
	Save/Write Master file to disk
	Alternate download to R object with haven
	Download, save XPT files to hard drive

	PFAS_I codes
	Perfluoroalkyl and polyfluoroalkyl
	ggplot2 tutorials online
	Rmarkdown resources
	The Story of Vector V: an R markdown example
	About the authors
	Acknowledgments
	R packages used for the book
	Extra Icons used:
	Exercise / Homework
	Study at home:

