
ColabFold on Linux Cluster with
HTCondor

Jean-Yves Sgro

Table of contents

Introduction . 1
What is AlphaFold2? . 2
ColabFold . 2
ColabFold on Linux Cluster . 3
ColabFold on BCC . 3

The shell script . 4
The submit file script . 5
Running the job . 6

ColabFold on CHTC . 7
CHTC shell scripts . 7
Download script . 7
Download submit file. 8
Structure prediction script . 9
Structure prediction submit file . 10
Running the prediction job: . 11

Multimer prediction . 11
ColabFold on laptop/desktop . 12

Introduction

This tutorial is providing information on using the Container (Docker) ColabFold version
of AlphaFold2 on local Linux Clusters. The example scripts use the currently latest version:
v1.5.5. The links below jump to the designated cluster:

1

• BCC - Biochemistry cluster .

• CHTC - Center for High Throughput Computing

This tutorial is the hands-on expansion of the Blog entry AlphaFold2 with ColabFold in Con-
tainer.

Note: Some of the code was converted from the Colab repository (see below) to
the scripts provided with the help of MS Copilot.

What is AlphaFold2?

AlphaFold2, developed by DeepMind, uses deep learning to predict protein
structures from amino acid sequences with high accuracy thanks to its use of
neural networks trained on known protein structures. The network is trained
with a specific deep learning method: the attention mechanism. This technique
allows the model to focus on different parts of the input data (in this case, amino
acid sequences) to understand the relationships and interactions between them
in 3D. By doing so, the model can more accurately predict the spatial arrange-
ment of amino acids in a protein, leading to precise 3D structure predictions.
Essentially, it helps the model to “pay attention” to the most relevant parts of
the sequence when making predictions. This allows AlphaFold2 to often match
experimental results.

Running the “native” AlphaFold2 software requires the installation of a large (2.5 TeraBytes)
database of known sequences and 3D structures. Therefore this version can only be run on
large clusters. The “Colab” version (see below) is more flexible as it accesses “pre-made” mul-
tiple sequence alignments online, avoiding the need for the large database.

ColabFold

AlphaFold2 Colab is a Google Colab notebook that allows users to predict protein structures
using the AlphaFold2 model. While free there are usage limits to using this Jupyter notebook
version that make this not suitable for all projects. Fortunately, the software is available as
a Container image that can run on multiple computers, from laptops to large servers. The
presence of a GPU from Nvidia makes the computation faster than CPU-only.

The software is available from github.com/sokrypton/ColabFold/

2

https://bcrf.biochem.wisc.edu/2024/11/14/alphafold2-with-colabfold-in-container/
https://bcrf.biochem.wisc.edu/2024/11/14/alphafold2-with-colabfold-in-container/
https://deepmind.google/technologies/alphafold/
https://www.deepmind.com/
https://colab.research.google.com/github/sokrypton/ColabFold/blob/v1.2.0/AlphaFold2.ipynb
https://github.com/sokrypton/ColabFold/

ColabFold can run directly on a laptop or desktop computer by implementing the specific
installation for a Macintosh, Windows, or Linux computer. These computers would typically
be only equipped with a CPU and lack a GPU.

However, ColabFold can be run within a “Container”. Using this method it can run on laptop
and desktop without complex installation, but also on large Linux Clusters that typically are
equipped with powerful GPU units.

The purpose of this tutorial is to help running the containerized version of ColabFold on a
laptop/desktop and on large clusters.

ColabFold on Linux Cluster

Linux clusters offer large systems equipped with GPUs that accelerate the computations of
structure prediction. Using a Container method allows the user to use the software without
the complex software installation process.

Biochemistry personnel can use the Biochemistry cluster (BCC) or may have access to the
Center for High Throughput Computing (CHTC.)

On a cluster we cannot use a command like docker run... as we need to use a non-
interactive method through the HTCondor scheduler and a shell script to depict the job we
want to accomplish i.e. running ColabFold with a protein sequence inside the container.

The method is similar on both clusters but a few details are different and explored in separate
sections.

In both cases we need to create the following:

1. A shell script containing the commands we want to run
2. A submit file in the HTCondor style defining the parameters of the job

ColabFold on BCC

NOTE: BCC does not currently recognize the GPU and will only work with the
slow CPU method. This problem is being addressed.

• BCC account for Biochemistry personnel: see contact info on BCC
• Reminder: users should work from the /scrath directory.

3

https://bcrf.biochem.wisc.edu/bcc/
https://chtc.cs.wisc.edu/
https://htcondor.org/
https://bcrf.biochem.wisc.edu/bcc/

The shell script

The container will be created from a preexisting image which has pre-defined parameters
pertaining to the use. Some of these settings need to be changed for the process to work on
the cluster.

One specific example is that the ColabFold scripts expect a “cache” directory located by de-
fault in /cache which is part of the “root” Administrator user that cannot be writen to by
other process. This is why at the top of the script we define the “home” directory as the “cur-
rent directory” ($PWD) and a few lines below we define the cache to the local directory cre-
ated.

The command python -m colabfold.download dowloads the AlphaFold2 weights. The
actual computation is done with the colab_batch commnand, in this case requesting an
energy minimization with --amber. Many more commands exist by requesting help with
colab_batch --help.

The results are written to a directory we call output which is then archived and compressed.
This is the only file that will be given back to the user.

Here is the script altogether later called runaf.sh in the submit file below:

echo $HOSTNAME
export HOME=$PWD
mkdir output
mkdir cache
export XDG_CACHE_HOME=./cache
export MPLCONFIGDIR=./cache
download AlphaFold2 weights
python -m colabfold.download

echo run test
colabfold_batch --amber --templates --num-models 1 \
--num-recycle 1 --jobname--prefix glucagon --zip test.fa output

mv output/*.zip .
echo DONE

The protein sequence tested is test.fa taken from PDB 1gcn. A very short sequence such as
that of glucagon can make testing faster. For example:

4

https://www.rcsb.org/structure/1gcn

>test_peptide 1gcn
HSQGTFTSDYSKYLDSRRAQDFVQWLMNT

The submit file script

HTCondor is a program that can schedule the process of running the job described in the
shell script. HTCondor will advertise the job and its requirements (for example requiring a
GPU) to the pool of computers (called compute nodes) until a “macth” can be found between
the required parameters (GPU, disk space, RAM memory, etc.) HTCondor then transfers the
files to the compute node that executes the job, and sends back the resulting files.

By using the options contained in --jobname--prefix glucagon --zip all files are
zipped in a single archive starting with the chosen job name prefix. However, the archive
needs to be moved from the output directory into the current directory (.) to be rec-
ognized by HTCondor as a file to transfer back when the job is done (i.e. instruction
should_transfer_files = YES in submit file below.)

Since we want to run a container, we need to specify universe = docker“. The next line
specifies the name of the image, in this case it is pulled from the github repository for Colab-
Fold.

We then specify the files to transfer: the shell script and the protein sequence to run. The
remaining lines specify hardware requirements and a naming convention for the system
output files. In this case we also use a batch_name variable that can help keep records on
different runs.

• The *.out file contains text that would appear on a terminal screen if the job was
interactive.

• The *.err file will list any error encountered.

• The *.log file is a usage report from HTCondor.

We can call this file runaf.sub

Universe = docker
docker_image = ghcr.io/sokrypton/colabfold:1.5.5-cuda11.8.0

Executable = runaf.sh
transfer_input_files = runaf.sh, test.fa
should_transfer_files = YES

5

when_to_transfer_output = ON_EXIT

request_GPUs = 1
request_memory = 40 GB
request_disk = 20 GB
request_cpus = 4

batch_name = sokrypton
output = colabfold_$(batch_name).out
error = colabfold_$(batch_name).err
log = colabfold_$(batch_name).log

Queue

NOTE: BCC can only support GPU drivers up to cuda 11.8 this is why we chose
this container image. CHTC will use a different image.

Running the job

When all 3 files are in place: runaf.sub, runaf.sh, and test.fa we can submit the job
with:

condor_submit runaf.sub

We can monitor the running of the job in the queue with:

condor_q

If there is a problem the job can be removed with the job number provided by condor_q
shown below as 123456.0.

condor_rm 123456.0

When the job is done, the user will receive the *.zip file(s) as well as the job report files.

The output can be extracted with the command:

6

unzip *.zip

ColabFold on CHTC

The method on CHTC is very similar, but the files created above for BCC are not completely
exchangeable. Therefore, if you are on CHTC you should follow the instructions below.

CHTC account: All UW personnel can request a CHTC account, usually with the
approval of a PI supervisor. Use this link to request an account.

On CHTC we use the Universe = container which can accommodate other container
formats, including docker images. However, Universe = docker would also work with
the examples below as they we are using docker images (as opposed to singularity .sif im-
ages.)

CHTC shell scripts

The BCC shell script above can be used “as is” for users that do not make a lot of predictions
as the AlphaFold2 weights will be downloaded with each job.

CHTC users that will compute a large number of structures may prefer to save the AlphaFold2
weights in a /staging directory (to be requested from CHTC: chtc@cs.wisc.edu) and copy
the weights back to a running container rather than download them each time a job is run.
The scripts below detail that process.

The scripts were crafted with help of Copilot from the information located in the ColabFold
Wiki.

CHTC GPUs support a higher level of “Cuda drivers” than BCC and we’ll use the version 12.2.2
below.

Download script

This script is meant to download the AlphaFold2 weights into the /staging/ directory. I
called it dl.sh. The colabfold/params directory is automatically created within the de-
fined cache and the files are then moved (command mv) to the /staging/... directory.
(Note: Your directory will have a different name so edit before using!

The ls command is to simply verify that all the files were present before transfer.

7

https://chtc.cs.wisc.edu/uw-research-computing/form.html
https://github.com/sokrypton/ColabFold/wiki/Running-ColabFold-in-Docker
https://github.com/sokrypton/ColabFold/wiki/Running-ColabFold-in-Docker

#!/bin/bash
export HOME=$PWD
mkdir output
mkdir cache
export XDG_CACHE_HOME=./cache
export MPLCONFIGDIR=./cache

python -m colabfold.download

ls -lhat ./cache/colabfold/params/*

mv ./cache/colabfold/params/*.txt /staging/jsgro/af2_weights
mv ./cache/colabfold/params/*.npz /staging/jsgro/af2_weights
mv ./cache/colabfold/params/LICENSE /staging/jsgro/af2_weights

echo DONE

In the next script, we’ll use the pre-downloaded weights by copying them within the running
container.

Download submit file.

The following submit file does not require a GPU. I called it download_weights.sub.

Universe = container
container_image = docker://ghcr.io/sokrypton/colabfold:1.5.5-cuda12.2.2
Executable = dl.sh
transfer_input_files = dl.sh
should_transfer_files = YES
when_to_transfer_output = ON_EXIT
RequestCpus = 4
RequestMemory = 8GB
RequestDisk = 10GB
Log = job.log
Output = job.out
Error = job.err
Queue

Submit the job with

8

condor_submit download_weights.sub

On CHTC the following command is best to monitor the queue rather than the command
condor_q.

condor_watch_q

The terminal will be refreshed every 10 seconds, and display the jobs as Idle in yellow, Run-
ning in cyan blue. Jobs that finished without error are shown in green, and red if on hold or
running with error.

The result of these steps will be the download and transfer of the AlphaFold2 weights within
a directory on your /staging directory.

Note: saving on your regular user area would work but may use a lot of local space and might
exacerbate the system. Check with CHTC to verify how to use if in doubt.

Structure prediction script

The main modification to this script is that we copy the AlphaFold2 weight files from the
/staging directory (your directory name will be different.) For this to work we also pre-
create the colabfold/params/ directory within the predefined cache (this is happening
within the container context).

This script compared to the BCC script has less limitations in the number of models or recy-
cle.

I called this script (also) runaf.sh

#!/bin/bash
echo $HOSTNAME

export HOME=$PWD
mkdir ./output
mkdir -p ./cache/colabfold/params/
export XDG_CACHE_HOME=./cache
export MPLCONFIGDIR=./cache

python -m colabfold.download
cp /staging/jsgro/af2_weights/* ./cache/colabfold/params/

9

echo run test
colabfold_batch --amber --templates --num-recycle 3 \
--use-gpu-relax --jobname--prefix glucagon --zip test.fa output

mv output/*.zip .

rm *64 # remove binary temp files

echo DONE

The protein sequence tested is test.fa taken from PDB 1gcn. A very short sequence such as
that of glucagon can make testing faster. For example:

>test_peptide 1gcn
HSQGTFTSDYSKYLDSRRAQDFVQWLMNT

Structure prediction submit file

I called this file runaf.sub:

Universe = container
container_image = docker://ghcr.io/sokrypton/colabfold:1.5.5-cuda12.2.2
Executable = runaf.sh
transfer_input_files = runaf.sh, test.fa
should_transfer_files = YES
when_to_transfer_output = ON_EXIT
CHTC requirements for GPU
requirements = (HasGpulabData == true)
request_GPUs = 1
+WantGPULab = true
request_memory = 40 GB
request_disk = 20 GB
request_cpus = 4

batch_name = sokrypton
output = colabfold_$(batch_name).out
error = colabfold_$(batch_name).err
log = colabfold_$(batch_name).log

10

https://www.rcsb.org/structure/1gcn

Queue

Running the prediction job:

condor_submit runaf.sub

On CHTC the following command is best to monitor the queue:

condor_watch_q

The output will be archived as a.zip file.

Multimer prediction

The current ColabFold can automatically decipher that a protein sequence was provided with
more than one sequence and will adjust accordingly. In this way the user does not have to
specify specific parameters pertaining to multimer run.

However, the file format for multiple sequences is slightly different than the standard FastA
format: in a standard format, in a multiple sequence file each sequence starts with a > symbol
followed by a sequence name.

The colabfold multiple sequence format has only one > symbol and the various sequences are
separated by a colon :.

For example, a colabfold version of hemoglobin is shown below, I called this file
hemoglobin-colab.fa:

>hemoglobineA+B
MVLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHGKKVADALTNA
VAHVDDMPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPAEFTPAVHASLDKFLASVSTVLTSK
YR:
MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGKKVLG
AFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVAN
ALAHKYH:
MVLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHGKKVADALTNA
VAHVDDMPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPAEFTPAVHASLDKFLASVSTVLTSK

11

YR:
MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGKKVLG
AFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVAN
ALAHKYH

To use this protein sequence the commands would be exactly the same:

colabfold_batch --amber --templates --num-recycle 3 --use-gpu-relax --jobname--prefix hemoglobin --zip hemoglobin-colab.fa output

Note that multiple lines starting with colabfold_batch could be included within the shell
script to run multiple, independent predictions.

ColabFold on laptop/desktop

The instructions to running on a personal computer such as a laptop or desktop are detailed
in this Wiki document:

Running ColabFold in Docker

The local computer needs to have a supporting software (e.g. Docker or Podman) that can
open an existing “image” to create a “container” that will run the “bottled” operating system,
libraries, and software needed. (Singularity is typically only available on Linux clusters.)

The provided commands start with docker but the same command could be replaced with
one starting with podman if that is what is installed.

Note: The container used for these exercises do not work on Silicon-based Macin-
toshes (e.g. M1, M2, M3,etc.) but function on Intel-based Macintoshes. However,
the ColabFold software can be installed directly on Silicon-based Macintoshes
following the instructions for local installation also detailed in AlphaFold2 on
Macintosh M1.

12

https://github.com/sokrypton/ColabFold/wiki/Running-ColabFold-in-Docker
https://www.docker.com/
https://podman-desktop.io/
https://github.com/YoshitakaMo/localcolabfold
https://bcrf.biochem.wisc.edu/2023/04/27/alphafold2-on-macintosh-m1/
https://bcrf.biochem.wisc.edu/2023/04/27/alphafold2-on-macintosh-m1/

	Introduction
	What is AlphaFold2?
	ColabFold
	ColabFold on Linux Cluster
	ColabFold on BCC
	The shell script
	The submit file script
	Running the job

	ColabFold on CHTC
	CHTC shell scripts
	Download script
	Download submit file.
	Structure prediction script
	Structure prediction submit file
	Running the prediction job:

	Multimer prediction
	ColabFold on laptop/desktop

