
12/19/2019 Docker - Beginner Biologist 4

file:///tmp/Docker_04.html 1/38

2 Set-up

3 Choosing a docker image

4 Web server image

5 Dataset explorer: a Python tool

6 RStudio server

7 Web interface summary

8 X11 software

9 EMBOSS interactive

10 Clean-up

11 Summary of commands learned or reviewed

12 APPENDIX A

10 Clean-up

11 Summary of commands learned or reviewed

12 APPENDIX A

13 APPENDIX B

14 APPENDIX C

REFERENCES

Docker - Beginner Biologist 4
Jean-Yves Sgro

2019 - (last updated: 2019-12-19)

1 Learning objectives
Explore graphical options in specific docker images
Web-based options
X11 options

In class these exercises will be run onto the classroom iMacs.

However, as best as I can I’ll provide Windows hints and instructions when possible, but a
basic understanding of line-command under Windows would be more than useful for that
(e.g. know what is DOS for example. See APPENDIX C.)

1 Learning objectives

12/19/2019 Docker - Beginner Biologist 4

file:///tmp/Docker_04.html 2/38

1.1 Requirements
Be familiar with Docker or follow earlier workshops: “Docker - Beginner Biologist”
workshops 1,2,3.

Docker will be used from a line-command terminal: Terminal on a Macintosh in
the classroom. A rudimentary knowledge of bash command-line is necessary.

If you are a Windows user: PowerShell can be used as a Terminal. However, setting
Docker to run on Windows is more involved (not covered in class.)

Docker username: downloads will require a (free) username, therefore
registration is necessary in order to follow the tutorial. Go to https://hub.docker.com
(https://hub.docker.com) and use the button “Sign up for Docker Hub” to register.

2 Set-up
Tutorials will be held in the Biochemistry classroom 201, and Docker has already be
installed.

Instruction for installation can be found on the install link of the Docker web site.

Note HTML Version only:

If you are following this document in HTML format the code is shown with a colored
background:

White background: standard output of programs.

2.1 Shared directory
We’ll use a shared directory called dockershare to share and save files.

1

Green background: commands from local computer bash terminal

Ligh plum background: commands from ALTERNATE local computer bash te
rminal

Blue background: commands and output when WITHIN a bash container

Yellow background: commands or output for information. Do not run!

12/19/2019 Docker - Beginner Biologist 4

file:///tmp/Docker_04.html 3/38

Use mkdir $HOME/dockershare , see also Appendix A.

2.2 Getting started
To get started we need to open a text terminal as detailed below. In class we’ll use a
Macintosh.

TASK:
Do one of the following:.

If you are on a Macintosh:

1. Find the Terminal icon in the /Applications/Utilities directory. Then double-
click on the icon and Terminal will open.

2. OR use the top-right icon that looks like a magnifying glass (Spotlight Search,) start
typing the word Terminal and press return. Terminal will open.

If you are on a PC:

1. Find Power Shell e.g. using Windows search or Cortana. This will open a suitable
text-based terminal.

(Note: Windows cmd does not offer the appropriate commands.)

2.3 Version check
This ensures that Docker is properly installed. The exact running version itself is not very
important.

At the $ or > prompt within the window of Terminal or PowerShell type
docker --version to check the version currently installed.

Docker version 19.03.5, build 633a0ea

2.4 Docker login: Required!
Before going further, it is necessary now to login with your Docker Hub ID. You should
already have created one before this or the previous workshop. If you need to create an ID
now go to https://hub.docker.com (https://hub.docker.com) to register.

TASK:
Docker login:.

docker --version

12/19/2019 Docker - Beginner Biologist 4

file:///tmp/Docker_04.html 4/38

Login with your Docker ID to push and pull images from Docker Hub.
If you don't have a Docker ID, head over to https://hub.docker.com
to create one.
Username: YOUR_DOCKER_ID_HERE
Password:
Login Succeeded
$

Note: if you do not login first you will receive an error message when trying to start docker
in the next steps.

3 Choosing a docker image
Today’s workshop will be an exploration of docker images that provide a graphical
interface, either web-based or X11-based. (The latter might not work easily on Windows.)

We’ll explore web-based and X11 examples which are the 2 major but very different
graphical interfaces:

Web based:

NGINX web server
Dovex Python tool with web interface to explore datasets
R/RStudio web-based server version for the R interface

(For a quick overview see section "webapps with docker" (https://docker-
curriculum.com/#webapps-with-docker) online .)

X11 -based:

X11 software IGV genome viewer
X11 utilities

3.1 Web-based images
In casual terms a container is running software on top of a host machine but without direct
connection to the host files (unless a shared folder is specified) and without connections to
the outside. In other words the container is almost like a box without a lid.

In simple terms, communication in and out the computer is done via specific “openings”
called ports. For example, the port of an ssh connection is port 22 . The default port
for a web connection is port 80 . A port is usually associated with a “protocol” which
would be “Hypertext Transfer Protocol” or http for the web.

docker login

2

12/19/2019 Docker - Beginner Biologist 4

file:///tmp/Docker_04.html 5/38

(For more details see Wikipedia links for “Port (computer networking)
(https://en.wikipedia.org/wiki/Port_(computer_networking))” and “well-known port
numbers (https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers#Well-
known_ports)”)

This is important as we’ll have to know or specify (or both) which
port are available for our purpose(s).

Note: The local computer is assigned a special web address which can be written in two
equivalent ways:

localhost
127.0.0.1

3.2 X11 images
First of all this option is more “tricky” than the web options and might not work in all
circumstances, and even less likely on a Windows computer. Hopefully the examples
provided will prove useful.

Citing Wikipedia : The X Window System(Scheifler and Gettys (1987)) (X11, or simply
X) is a windowing system for bitmap displays, common on Unix-like operating systems.

4 Web server image
As a first exercise we’ll pull a docker image for a simple web server running over the
linux implementation alpine seen in a previous workshop.

For this simple test we’ll use the official NGINX docker image. NGINX is open source
software for web serving […].

The docker hub page for this image is: https://hub.docker.com/_/nginx
(https://hub.docker.com/_/nginx)

The purpose of this container is to run a web server, and therefore it is likely that there will
be some version of “entry point” (see previous workshop) that will start the web server as
soon as the container is activated. This may be suggested from the information provided by
the hub page.

The docker file is available online at https://github.com/nginxinc/docker-
nginx/blob/master/stable/alpine-perl/Dockerfile (https://github.com/nginxinc/docker-
nginx/blob/master/stable/alpine-perl/Dockerfile) and it ends with the following three
statements, two of them will be useful later:

3

4

5

6

12/19/2019 Docker - Beginner Biologist 4

file:///tmp/Docker_04.html 6/38

The last line with CMD defines a default behavior when the container is started without
specifying a command to be executed. In this case it would start the nginx web server,
therefore not allowing shell access by default.

Note: CMD can be bypassed simply by adding a command at the end of a docker run
command e.g. adding /bin/bash to open a shell.

In contrast an ENTRYPOINT command is mandatory and can only be bypassed by
adding e.g. --entrypoint /bin/bash in the the docker run command.

For more on CMD and ENTRYPOINT see this blog entry : “Docker RUN vs CMD vs
ENTRYPOINT (https://goinbigdata.com/docker-run-vs-cmd-vs-entrypoint/)” - (lso
archived at bit.ly/2WPDME2 (https://bit.ly/2WPDME2)

TASK:
pull NGIX image.

We can list images with:

REPOSITORY TAG IMAGE ID CREATED SIZE
nginx latest 540a289bab6c 2 weeks ago 126MB

4.1 Docker run commands
In this section we’ll try a few versions for the docker run command to learn about
opening and finding ports and other useful information.

There are many options that can be listed via command: docker run --help .

4.1.1 Random port mapping

EXPOSE 80

STOPSIGNAL SIGTERM

CMD ["nginx", "-g", "daemon off;"]

7

docker pull nginx

docker image ls nginx*

12/19/2019 Docker - Beginner Biologist 4

file:///tmp/Docker_04.html 7/38

In this first attempt we’ll use the -P modifier defined by help as:

-P, --publish-all Publish all exposed ports to random ports

This -P option will allow to map the ports, but as it is said in the help the mapping will be
to a random number. We’ll detail below what that really means.

We’ll also introduce --name to provide a specific name designation of our choosing rather
than a random name given to the container. This will help below to have a “standard”
command for e.g. addressing the container. In other words, the commands will work for
every user. The name chosen below is simply ng1 .

TASK:
Run command.

The $ terminal shell prompt is not reappearing, which means that the container is
active. However, this terminal is no longer useable for anything else at the moment i.e. we
cannot type any more commands, even addressed to the local host. Therefore it is
necessary to open a new terminal for any command we want to issue on the local host.

Mac: use menu cascade Shell > New Window > Basic (or another colored
option.)
Windows: open a new PowerShell

The docker run command above named the container ng1 and -P exposed the
container ports to random port(s) on the host. We can find out what the random port is as
shown below.

On the new terminal window type the following command using the name of the
container:

80/tcp -> 0.0.0.0:32777

(Note: We could also see this information with docker ps under the PORTS column as
shown below.)

In this example we see that port 80 which we saw earlier is the standard default port
number for a web server is mapped to port 32777 which means that port 80 of the
container would be connected to port 32777 on the local host (the computer you are
using.)

docker run --rm --name ng1 -P nginx

 docker port ng1

12/19/2019 Docker - Beginner Biologist 4

file:///tmp/Docker_04.html 8/38

Therefore you should be able to see the content of the web site in the container with the
following web address with a web browser on your computer:

http://localhost:32777

Note: Adapt the port number to what you will see on your own terminal. The
random aspect of -P means that the number on the local host might not be always the
same. So we’ll fix this in the next section.

This is what you’ll see:

Summary: we were able to start a container running a web site and
accessing the site from a browser running on the local computer.

We’ll see shortly that this can be very useful to run specific web-based software.

From this alternative terminal we can also see information about running containers with:

CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES
bdadff9f3c9f nginx "nginx -g 'daemon of…" 24 minutes ago
Up 24 minutes 0.0.0.0:32777->80/tcp ng1

The output is long an wraps, so it may be clearer to use the followiong command to only
see the right-hand part:

 PORTS NAMES
 0.0.0.0:32768->80/tcp ng1

 docker ps

docker ps | cut -c 105-150

12/19/2019 Docker - Beginner Biologist 4

file:///tmp/Docker_04.html 9/38

TASK:

Turn off container.

There are 2 ways to turn off this container:

1. “kill” the container process on the original terminal (green background in color
version of this document) with Ctrl + C

2. “stop” the container with docker stop ng1 . Since we started the container with
--rm it will be automatically deleted when it is stopped.

4.1.2 Complete command
With this final, complete command we’ll address useful or necessary points.

1. Detached terminal: (-d) In the previous tests we had to use a secondary terminal
because the prompt was not given back after launching the container. This can be
changed and the container can be made to run in the background with the “detach”
modifier as detailed in help:
-d, --detach Run container in background and print container ID .
-d will allow the shell prompt back, in effect placing the container processes in the

background.
2. Name: (--name) as above we’ll specify a name of our choosing to designate the

container. Here we’ll call it ng2 .
3. Shared folder: (-v) this provides a channel of communication for data exchange

between the container and the host file system. The folder /data will be created
within the container and share all files from the dedicated host folder e.g.
$HOME/dockershare . (See Appendix A.)

4. Port mapping: (-p) We’ll map the relevant port (port 80) to a port number of
our own choosing with the -p (lower case) option.

From help:

-p, --publish list Publish a container's port(s) to the host .

Typical example mapped port names could be: 8080 , 8787 , 8888 .

TASK:
Start new, detached container with shared folder.

aac92902b04e7819a35ab3abb0a2d485689fa980da37842b125c6bf251753f5d

docker run -d --name ng2 -p 8080:80 --rm -v $HOME/dockershare:/data
nginx

12/19/2019 Docker - Beginner Biologist 4

file:///tmp/Docker_04.html 10/38

Thanks to the -d flad we get the prompt back after the long name of the container is
echoed on the screen. We can check the state of the container with the command:
docker ps or docker container ls both providing the same output:

CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES
aac92902b04e nginx "nginx -g 'daemon of…" 3 minutes ago
Up 3 minutes 0.0.0.0:8080->80/tcp ng2

We can note that the PORTS column contains 0.0.0.0:8080->80/tcp reflecting the port
mapping.

We can now test if the web site works after opening a web browser to the local host
address:

http://localhost:8080

Note that since we defined the port ourselves there is no randomness to this 8080
assignment.

EXERCISE:
Time permitting We can create a simple document and view it in the web browser.

Step 1: Create a simple document in the shared folder. (See Appendix A.) For
example Copy/Paste the following to create a very simple HTML document (or
create a file in a way you know how, or even a plain text file.)

Step 2: We’ll need access to a shell within the container. We can use the exec
command that we learned in a previous workshsop. Since the container is detached
we can use the same Terminal session with the command:

docker ps

cd $HOME/dockershare

cat > mytestfile.html <<- EOF
<h1>My Test</h1>
<p>This is a simple HTML file.</p>
EOF

docker exec -it ng2 /bin/bash

12/19/2019 Docker - Beginner Biologist 4

file:///tmp/Docker_04.html 11/38

root@aac92902b04e:/#

Therefore the next commands will be issued within the container.

Step 3: We need to know where the web site documents are stored. The nginx
documentation is not so clear but the answer for this container is:
/usr/share/nginx/html . Therefore we need to make our file mytestfile.html

available at this location. One easy way is to simply copy it there, remembering that
within the container the shared folder is called /data :

(Note: If you are more familiar with bash an alternative would be to use a symbolic link
(with ln -s) to the HTML file or a complete folder. This would be most useful for large
size files, data files or folders.)

We can now check if this work within the web browser with the local web address:

http://localhost:8080/mytestfile.html

If all went according to plan, you should see this in your browser:

We can now exit the container bash session. This will return us to the local host $
prompt.

$

Important Note: Since the container was created as detached the exit command here
only takes us out of the exec session of bash initiated thereafter. Therefore the container
is still running in the background, which is expected and wanted behavior. You can verify
that this is true in 2 ways:

1. refresh the local host browser page: if the container was no longer running the page
would become “not found” or an error such as “can’t connect to the server” may be

cd /usr/share/nginx/html
cp /data/mytestfile.html .
ls -l

exit

12/19/2019 Docker - Beginner Biologist 4

file:///tmp/Docker_04.html 12/38

shown.
2. run the docker ps command and see that the container is still active.

4.1.3 Stop container
TASK:

Stop the container.

Now that we are done with this project we need to stop the container and delete it. Since
we started the container with --rm when it is stopped it will be automatically removed.
(Otherwise the docker rm command would be needed.)

ng2

Note: We can verify that this worked by checking with docker ps .

5 Dataset explorer: a Python tool
This next brief exercise is based on Dovex a web based tool to quickly provide an
interactive overview and enable quick exploration of datasets from Melbourne
Bioinformatics software collection.

The purpose of Dovex is to help inspect and explore tabular datasets in the form of
summaries but also on a large number of optional graphical interactive plots.

Dovex has been tested on Python 3 and can be installed on the local computer. However,
running or installing Python software should not be difficult, but it is often confusing.
Running Dovex from a docker container will alleviate any necessary installation of Python
on the local computer.

5.1 Docker image
TASK:

pull dovex image. :latest is assumed.

We can list images with:

docker stop ng2

8

docker pull supernifty/dovex

docker image ls */dovex

12/19/2019 Docker - Beginner Biologist 4

file:///tmp/Docker_04.html 13/38

REPOSITORY TAG IMAGE ID CREATED SIZE
supernifty/dovex latest 8b7d9debceef 6 months ago 1.24GB

5.2 Datasets
The documentation says that 2 datasets are provided. This is true for the online test
version of Dovex .

The documentation (see below) also states that the 2 datasets are located within
/app/uploads on the container, and that assumes that the web interface has access to

this directory.

5.3 Local Iris dataset
We’ll use one of them (Iris dataset) that we can download from the Machine Learning
archive web page archive.ics.uci.edu/ml/datasets/Iris
(http://archive.ics.uci.edu/ml/datasets/Iris) which provides detailed information.

Typically, the datasets in the archive separate “data” and “information,” including possible
column headers for the data file. This is why on this page there are 2 links as shown on the
image above. You can read in APPENDIX B how the column headers were added to the
data that you can download directly:

Note: curl is similar to wget that is not installed by default on Macs.

This is the file that we’ll open in the next session.

5.4 Docker run: start container
Installation and running instructions are available on both:

GitHub: https://github.com/supernifty/dovex
(https://github.com/supernifty/dovex)

9

cd $HOME/dockershare

curl -o iris-names.csv https://static-bcrf.biochem.wisc.edu/tutoria
ls/docker/iris-names.csv

12/19/2019 Docker - Beginner Biologist 4

file:///tmp/Docker_04.html 14/38

Docker Hub: https://hub.docker.com/r/supernifty/dovex
(https://hub.docker.com/r/supernifty/dovex)

The information offered in these pages is useful to understand how to launch the Dovex
program but does not provide a user manual, perhaps because the graphical interface for
Dovex is web-based and rather intuitive.

We already know enough to understand and launch this tool with docker from the
information provided. The critical information is in plain text: By default, the app stores
uploaded datasets in the uploads directory, but also within the suggested docker run
command:

port mapping: 5000
container shared directory location: /app/uploads

We’ll add more to the suggested command:

--rm to automatically delete the container when we are done
--name to give a name to our container to easily address it e.g. dovex1

Mapping shared directories

We can verify the contents of the /app/uploads directory with an entrypoint
command as we learned on previous workshops:

forestfires.csv
iris.data

IF we wanted to keep access to this directory for test while at the same time providing
access to our own data we should map the dockershare directory to a different
directory within the container. Below we’ll use /app/explore which will create that
directory within the container to contain the shared files. The uploads directory will
therefore remain available for the built-in test buttons on the web page.

We could also add a detach -d command but for now it is useful to see the screen output
provided by the container. This means that we will not get the prompt back and we may
need to open an alternate terminal later.

TASK:
Start dovex container. :latest is assumed.

Based on the details above the following docker run command will start the container as
we expect. (If you need to create the shared directory dockershare see APPENDIX A.)

docker run --rm --entrypoint /bin/bash supernifty/dovex -c "ls up
loads"

12/19/2019 Docker - Beginner Biologist 4

file:///tmp/Docker_04.html 15/38

 * Serving Flask app "main" (lazy loading)
 * Environment: production
 WARNING: Do not use the development server in a production enviro
nment.
 Use a production WSGI server instead.
 * Debug mode: on
 * Running on http://0.0.0.0:5000/ (Press CTRL+C to quit)
 * Restarting with stat
 * Debugger is active!
 * Debugger PIN: 886-406-121

To use the application point your browser to one of these equivalent addresses:

http://127.0.0.1:5000/ or http://localhost:5000

You should see a web page like this:

TASK:

Click “Iris dataset” link.

As a first approach, below the phrase “Alternatively, explore one of the example datasets:”
click on the link Iris dataset. This dataset is the one that was included with the docker
image within the uploads directory.

Note: This will immediately bring a table in the page, while at the same time you may
notice that on the Terminal some information of what page(s) have been loaded appear.
This is typical log data that could be recorded on an actual web site to monitor which
pages are most accessed.

docker run --name dovex1 --rm -p 5000:5000 \
-v $HOME/dockershare:/app/explore supernifty/dovex

12/19/2019 Docker - Beginner Biologist 4

file:///tmp/Docker_04.html 16/38

172.17.0.1 - - [14/Nov/2019 22:57:57] "GET /explore/iris.data HTT
P/1.1" 200 -
172.17.0.1 - - [14/Nov/2019 22:57:57] "GET /data/iris.data HTTP/1.
1" 200 -

EXERCISE:
Time permitting

There are many useful modes of explorations, we can just look at one of them called PCA
that helps distinguish “groups” of data. For this, follow these steps:

Click on button link Dimensionality Reduction
Under Select a projection algorithm: select PCA
Under Label data point with: select Class
Click on button Start Analysis

EXERCISE:
Time permitting another dataset, for example the “other” Iris dataset that we
downloaded earlier.

Hint: This dataset column headers are lower case while the dataset provided in the
container has an uppercase first letter e.g. “class” vs “Class” as a way to distinguish them.

5.5 Exit
Since we did not detach the container process on the terminal it is necessary to follow the
instructions to Press CTRL+C to quit .

6 RStudio server
The docker image used for this example may provide you with a more practical application.

12/19/2019 Docker - Beginner Biologist 4

file:///tmp/Docker_04.html 17/38

R and RStudio are heavily used in data analysis. RStudio is a useful graphical interface
to the software R . This exercise demonstrates using R wihtin RStudio via a web
interface running in a docker container.

While it is possible to install R and RStudio natively on your own comptuter it may be
useful to run an older version, or, as we’ll see in a future tutorial, create your own docker
image with specific R options.

With all the experience of the previous section we’ll now follow the process to:

1. pull the relevant docker image
2. activate the image with detached mode, shared folder and port mapping.
3. run a small exercise to see that it all works

6.1 Docker image
After this workshop you may want to explore other possible images - as of this writing
there are 1,029 entries if searching for “rstudio” on the docker hub. For now we’ll use the
image rocker/rstudio .

TASK:
Pull image.

This image may take a bit longer as it is of larger size than what we have tried before.

REPOSITORY TAG IMAGE ID CREATED SIZE
rocker/rstudio latest 0dfdbece112b 16 hours ago 1.36GB

The hub page provides very important and critical information:

Quickstart:

docker run --rm -p 8787:8787 -e PASSWORD=yourpasswordhere rocker/rstudio

Visit localhost:8787 in your browser and log in with username rstudio and the
password you set. NB: Setting a password is now REQUIRED. Container will
error otherwise.

Note that all commands documented here work in just the same way with any container
derived from rocker/rstudio , such as rocker/tidyverse .

10

docker pull rocker/rstudio

docker image ls rocker/*

12/19/2019 Docker - Beginner Biologist 4

file:///tmp/Docker_04.html 18/38

This is valuable information, that, however, is not always present so clearly on all hub
pages. For example, the tidyverse version mentioned is on hub page
hub.docker.com/r/rocker/tidyverse (https://hub.docker.com/r/rocker/tidyverse) but does
not provide the critical docker run example, and one would not understand that the
image fails because a password is necessary and has to be provided when the container is
launched.

One could argue that this version is based on the rstudio version but having information
on the page itself is most useful. Some more search on the hub or on the web would lead
one to the rocker project web site www.rocker-project.org (https://www.rocker-
project.org) where the relevant information is revealed:

In the same way, unfortunately, a large number of entries on the docker hub do not
provide all the necessary information for a “casual” user.

Some more information can be gleaned from the dockerfile on the hub page.

The last few lines read:

The code EXPOSE 8787 means that internally the container will not use the default
port 80 but port 8787 . This in turn is reflected on the port mapping command.

The CMD command suggests that the software within the container will be initiated when
the container starts as we experienced in the previous section. Therefore we may want to
detach the running container from the terminal with -d as we did before.

11

EXPOSE 8787

automatically link a shared volume for kitematic users
VOLUME /home/rstudio/kitematic

CMD ["/init"]

12/19/2019 Docker - Beginner Biologist 4

file:///tmp/Docker_04.html 19/38

The information about kinematic users provides useful information to be able to locate the
data we would want to share from the local host. In the command below we’ll map the
shared container to /home/rstudio/data

6.2 Docker run: start container
The suggested command above will work, but adding the elements we tested in the
previous section will make it even easier:

-v for a shared directory, always extremely useful to be able to access your own
data. (See Appendix A.)
-d to detach the container.
--name to provide a name of our choosing, e.g. rs1

The final command is shown below.

TASK:
Start container.

The command is shown below with the line continuation symbol \ to allow writing the
command on multiple lines, which is useful for clarity:

Note that yourpasswordhere is a valid password but in real life situation a better
password would be advised for security.

Open a web browser to the local host address with the port number provided:

http://localhost:8787

Use rstudio as the username and the password used on the line command. Optionally
click the “stay signed in” button. Then press return or click on the Sign in button. (See
image.)

docker run --rm -d --name rs1 \
-v $HOME/dockershare:/home/rstudio/data \
-p 8787:8787 -e PASSWORD=yourpasswordhere rocker/rstudio

12/19/2019 Docker - Beginner Biologist 4

file:///tmp/Docker_04.html 20/38

This will bring a new “R session” within RStudio . Note the presence of the data
directory shown bottom right on the figure below. This is the result of sharing a directory,
providing access to file to the session, as well as allowing saving data files from the session.

Note that we could also choose to simply use the kinematic directory as the holder of the
data we share by changing the -v portion of the command to:
-v $HOME/dockershare:/home/rstudio/kinematic .

From this point forward using the software would work in the same way as on a native
installation.

The data to be shared with the session can be placed within the shared directory. To obtain
access to a shell looking within the docker container we could, as before, use the exec
command and the exit command when done.

root@aac92902b04e:/#

6.3 Verify that it works
EXERCISE:
Time permitting We can quickly verify that this works. The commands would be R
commands to be given on the left side console. For example by entering commands such
as:

docker exec -it rs1 /bin/bash

random numbers object:
r1 <- rnorm (1000)
data spread
summary(r1)
distribution plot
hist(r1)

12/19/2019 Docker - Beginner Biologist 4

file:///tmp/Docker_04.html 21/38

Results:

 Min. 1st Qu. Median Mean 3rd Qu. Max.
-3.57977 -0.52039 0.08894 0.08786 0.76438 2.86953

The histogram would appear within the “Plots” tab within the RStudio bottom right
panel.

7 Web interface summary
We have explored useful options for using web-based graphical user interface (GUI)
docker images. This is perhaps the easiest GUI.

There are many docker images that take advantage of this GUI. Another example not
studied in this workshop could be accessing “Python Jupyter Notebooks” for example the
jupyter/datascience-notebook which comes with a heavy documentation .

In this case there is one more layer of security added, based on “tokens” so that the web
page to open would look like:

http://127.0.0.1:8888/?token=ea2712974027eb22c78c1ab5dc84c9cf7aa4af4d34e8417d

This is beyond the scope of this workshop.

8 X11 software

12 13

12/19/2019 Docker - Beginner Biologist 4

file:///tmp/Docker_04.html 22/38

What is X11 exactly? “X11” is, strictly speaking, a communication protocol. The full
name of this software distribution is “the X Window System”. Historically, this software
distribution was made by MIT; today it is maintained by the X.Org Foundation. The
X11 protocol allows applications to create objects such as windows and use basic
drawing primitives.

(MIT: Massachusetts Institute of Technology)

8.1 A real life example
In one of the classes that I teach I was once confronted with a strange situation involving a
genome browser called IGV that runs on the Java platform. The current IGV program
was running on Java version 8, but for some strange reason he had Java version 10 on
his Mac, a version that was, strangely, not yet available.

Even more strange he was not able to (easily) remove this “future” version from his Mac.

The solution I found was to create a docker image to solve this problem! (We’ll learn in a
later workshop how to create your own docker images.) This image is still available on the
docker hub on this page: hub.docker.com/r/jysgro/igv
(https://hub.docker.com/r/jysgro/igv)

8.2 Pull container
TASK:

Pull container.

X11 is the graphical interface of the
Unix/Linux world. Readily accessible in
MacOS as well with the addition of

XQuartz .

In Windows access might be possible via
additional software such as xming or
VcXsrv .

See also https://dev.to/darksmile92/run-
gui-app-in-linux-docker-container-on-
windows-host-4kde
(https://dev.to/darksmile92/run-gui-app-
in-linux-docker-container-on-windows-
host-4kde)

14

15

16

17

18

19

20

12/19/2019 Docker - Beginner Biologist 4

file:///tmp/Docker_04.html 23/38

This container was uploaded onto the hub with the a tag specifying the IGV version that
it contains, in this case 2.4.11 which was the latest version at the time. Therefore the
default, inferred tag latest will not work and the tag needs to be specified. (Note: this
tag can be found on the Tags tab of the hub page.)

We can check the list:

REPOSITORY TAG IMAGE ID CREATED SIZE
jysgro/igv 2.4.11 dd832a2178d1 16 months ago 937MB

The large majority of X11 software are graphical in nature and therefore need to be
displayed somewhere - usually the screen of the current, local computer.

However, X11 can also display graphical windows on another computer, and in our case we
are interested in displaying the graphical interface onto the local computer, even if the
graphical window, in fact, originates from within the docker container.

There are multiple steps necessary to the success of running this type of X11-based
software within a docker container.

1. X11 software must be able to accept network connections
2. The local computer must be instructed that X11 information should go through. This

is done with program xhost
3. Add instruction for the docker container when launched with docker run .

TASK:
Set-up.

Let’s accomplish these steps one by one:

Step 1: For Macintosh XQuartz activate the option “Allow connections from
network clients” in settings (menu: Xquartz > Preferences... and click on

X11 relies on an “environment variable”
named DISPLAY to know where to send the
graphics. Therefore, we’ll have to add
information about DISPLAY on the
docker run command but also inform the

local computer that it should allow this
process to go through. (See the details
below.)

docker pull jysgro/igv:2.4.11

docker image ls jysgro/*

12/19/2019 Docker - Beginner Biologist 4

file:///tmp/Docker_04.html 24/38

Security tab .)
Step 2: type xhost + 127.0.0.1 on a local terminal to add “local host” in the
authorized list.

Note: xhost + localhost is an alternative command.

Step 3: we’ll use -e to specify the DISPLAY environment variable (see
docker run --help)

See also the hub page for more specific details.

With additional folder sharing the command will be, using \ as the line-continuation:

#

To start the IGV genome viewer issue the following command. (Note: the & symbol places
the software to run in the background therefore releasing the prompt for further
commands if desired.)

If everything was set well, in spite of expected warnings, a graphcial window based on
Human Genome version hg19 will be shown by default, similar to the image below.

The IGV software could then be used to load and inspect genomic files such as .sam or
.bam files derived from Next Gen sequencing mapping of reads onto a genome, or .vcf

files describing sequence variants.

This is not the purpose of this workshop so we can now exit the program with the File >
Exit menu cascade or simply clicking the red circle of the window (Macintosh.)

xhost + 127.0.0.1

docker run -it --rm \
-v /Users/$USER/dockershare:/data \
-e DISPLAY=docker.for.mac.localhost:0 \
jysgro/igv:2.4.11 /bin/sh

igv &

12/19/2019 Docker - Beginner Biologist 4

file:///tmp/Docker_04.html 25/38

Then we need to exit the container to stop it and return to the local host prompt.

EXERCISE:
Time permitting we can have a little fun with a very small, well know X11 program
named eyes that draws eyes on the screen that follow the mouse arrow as it moves.

Pull image (there are multiple options, this one is the most popular)

Start the container, using -d to detach it. There is no need to shared a directory. The
xhost command from above should still be active. If not issue xhost + 127.0.0.1

again.

This will launch a window with eyes. The pupil of the eyes will follow the mouse
movements:

When closing the window, the docker container will be deleted since we used --rm in the
command.

Restart the container with an entrypoint option:

Then start the xeyes program with & to place the process in the background.

We can then also launch another useful program called xclock that shows time:

exit

docker pull gns3/xeyes

docker run -it --rm -d -e DISPLAY=docker.for.mac.localhost:0 gns3/x
eyes

docker run -it --rm --entrypoint "/bin/bash" \
-e DISPLAY=docker.for.mac.localhost:0 gns3/xeyes

xeyes &

12/19/2019 Docker - Beginner Biologist 4

file:///tmp/Docker_04.html 26/38

The following command will show the X11 logo

There are more useful X programs:

calculator: xcalc
word processors: xditview , xedit (best with shared folder)

Finally, exit the container:

9 EMBOSS interactive

EXERCISE:
Time permitting

We have worked with the EMBOSS programs in a previous workshop. Now that we know
how to use X11 it is possible to use some of the EMBOSS programs that have a graphical
output that we can display as an X11 image without the need to save the graphic images

xclock &

xlogo &

exit

$

12/19/2019 Docker - Beginner Biologist 4

file:///tmp/Docker_04.html 27/38

into a file as we did before. This allows for faster intereacion.

Below is an exercise inspired by an EMBOSS tutorial (archived 15APR2018) based on a
verion of rhodopsin.

The EMBOSS container does not contain the databases, so instead of calling a sequence
from a database as in the tutorial (e.g. embl:xlrhodop) you can download a human
version of rhodhopsin in FastA format called rho_homo_sapiens.fa either from a link
within the tutorial web site or directly as shown below after starting the docker container.

TASK:
Download rho.fasta .

The container does not offer the wget command so we’d better download the file before
starting the container. You could manually download the sequence file ahead of time and
place the file within the dockershare directory.

On a Mac the command curl (Copy URL) does a similar job as wget so we can use the
command line to do the download as shown, specifying the name of the downladed file
with -o :

TASK:
Xhost.

It may be necessary to re-run the xhost command:

Then verify that localhost is now in the list

access control enabled, only authorized clients can connect
INET6:localhost
INET:localhost

TASK:
Start EMBOSS container.

21 22

cd $HOME/dockershare
curl -o rho_homo_sapiens.fa https://static-bcrf.biochem.wisc.edu/tu
torials/docker/rho_homo_sapiens.fa

xhost + localhost

xhost

12/19/2019 Docker - Beginner Biologist 4

file:///tmp/Docker_04.html 28/38

The docker image might still be within the computer account that you are using since we
used it in a previous workshop. If it is not the case the image will automatically be pulled
from docker hub.

We are now ready to use EMBOSS, including with interactive graphics. Some of the
commands below are informational, others prepare files for further commands, therefore
proceeding in order is recommended.

Exercise 1: check the file content with e.g.:

Show file content on screen with more , or head
Use EMBOSS to know sequence length:

Exercise 2: Identify Open Reading Frames (ORF) - graphics output

Then press return after [x11] and a window will open.

Plot potential open reading frames in a nucleotide sequence
Graph type [x11]:

The longest ORF is on frame 3 (circled in figure above) and is the most likely candidate for
a protein translation. It begins at about 100 and ends at about 1200. We’ll now use
getorf to identify the exact start and end points for our translation.

docker run -it --rm -v $HOME/dockershare:/data -e DISPLAY=docker.fo
r.mac.localhost:0 pegi3s/emboss

infoseq -only -length rho_homo_sapiens.fa

plotorf rho_homo_sapiens.fa

12/19/2019 Docker - Beginner Biologist 4

file:///tmp/Docker_04.html 29/38

Note: You need to close the image display to get the # prompt back on the container.

Exercise 3: Identify exact start and end points for translation

We add -opt to see useful optional parameters:

We’ll chose the standard genetic code by pressing return or typing 0
Since the ORF is largest, we can eliminate small ones by provinding a large expected
length, e.g. 500
For the output option we’ll choose 3 and accept the default sequence name ending
with .orf .

Find and extract open reading frames (ORFs)
Genetic codes
 0 : Standard
 1 : Standard (with alternative initiation codons)
 2 : Vertebrate Mitochondrial
// truncated output //
Code to use [0]:
Minimum nucleotide size of ORF to report [30]: 500
Maximum nucleotide size of ORF to report [1000000]:
Type of sequence to output
 0 : Translation of regions between STOP codons
 1 : Translation of regions between START and STOP codons
 2 : Nucleic sequences between STOP codons
 3 : Nucleic sequences between START and STOP codons
 4 : Nucleotides flanking START codons
 5 : Nucleotides flanking initial STOP codons
 6 : Nucleotides flanking ending STOP codons
Type of output [0]: 3
protein output sequence(s) [rho_homo_sapiens.orf]:

You can type the content of the file on the screen with cat rho_homo_sapiens.orf

Question: Can you find the begin and end nucleotide numbers of this ORF on the origial
.fa file?

Hint: head

Answers: begin __ __

Answers: end __ __ __ __

Question: Can you identify the START and STOP codon?

Answers: Yes / No: START SEQUENCE __ __ __

getorf -opt rho_homo_sapiens.fa

12/19/2019 Docker - Beginner Biologist 4

file:///tmp/Docker_04.html 30/38

Answers:Yes / No: STOP SEQUENCE __ __ __

Optional exercise: use the EMBOSS program needle to align the .orf sequence to
the .fa complete sequence. e.g.
needle rho_homo_sapiens.fa rho_homo_sapiens.orf and accepting defaults. This

would help to locate the exact location and sequence of the STOP codon. Use
more rho_homo_sapiens.needle to inspect the file, and q to quit viewing.

Answer: STOP SEQUENCE __ __ __

Exercise 4: Translation

The sequence rho_homo_sapiens.orf can be translated with the EMBOSS program
transeq .

Translate nucleic acid sequences
protein output sequence(s) [rho_homo_sapiens_1.pep]:

Note that _1 is automatically added to the default output file.

Question: Can you guess where the _1 comes from?

Answer:
__

Exercise 5: Secondary structure prediction - graphics output

In a previous workshop we used the EMBOSS program pepinfo . The difference here is
that we’ll see the result as a series of two an X11 live-displayed images.

Plot amino acid properties of a protein sequence in parallel.
Graph type [x11]:
Output file [rho_homo_sapiens_1_1.pepinfo]:

Note: it is necessary to type return or Enter to see two graphic images.

Note that it is necessary to close the image to regain access to the # prompt.

Exercise 6: Predicting transmembrane regions - graphics output

The results from the pepinfo hydropathy plot showed seven highly hydrophobic regions
within rho_homo_sapiens_1.pep . Could these be transmembrane domains? We can use
the EMBOSS program tmap to investigate this possibility:

transeq rho_homo_sapiens.orf

pepinfo rho_homo_sapiens_1.pep

12/19/2019 Docker - Beginner Biologist 4

file:///tmp/Docker_04.html 31/38

Plot amino acid properties of a protein sequence in parallel.
Graph type [x11]:
Output file [rho_homo_sapiens_1_1.pepinfo]:

Note that it is necessary to close the image to regain access to the # prompt.

The original tutorial image shows thick black bars above the predicted transmembrane
regions. This may be an output from an older version of tmap as no options were found to
add these automatically.

They further explain that: Taken in combination with the results from pepinfo , we can
see that there may be seven transmembrane helices in this protein.

Note: You can see the peptide sequence of the transmembrane regions from the secondary
output file: with more rho_homo_sapiens_1.tmap .

TASK:
Stop container.

Since we started the container with --rm once we exit the container will be deleted
automatically.

For more details on all these exercises you can refer to the original tutorial:
http://emboss.sourceforge.net/docs/emboss_tutorial/node4.html
(http://emboss.sourceforge.net/docs/emboss_tutorial/node4.html)

tmap rho_homo_sapiens_1.pep

exit

12/19/2019 Docker - Beginner Biologist 4

file:///tmp/Docker_04.html 32/38

10 Clean-up
If you have started any container without the --rm option it will be in a stopped state.

To list stopped container:

To remove a container use docker rm and add the DOCKER ID provided in the list.

Note that some containers might need to be stopped before it is allowed to delete them.
For this use docker stop and add the DOCKER ID provided in the list.

11 Summary of commands learned or
reviewed
Docker Commands Comment

docker --version Short output of version

docker login Required. Register at docker.com

docker pull download a docker image from hub.docker.com

tag some docker images require a specific tag

docker image ls list docker image. Equiv command: docker images

docker container ls list active containers

docker ps list active containers

docker port print mapped ports

-P docker run option to map to random port number

-p docker run option to map to specified port number

-d docker run option to detach container: background running

-e docker run option to specify an environment variable

docker exec executes a command on running container

docker stop stop a running container

--entrypoint docker run option to bypass default command

Shell Commands / Variables Comment

docker container ls -a

12/19/2019 Docker - Beginner Biologist 4

file:///tmp/Docker_04.html 33/38

Shell Commands / Variables Comment

$HOME shell variable designated the default home folder

cd $HOME/dockershare change directory to dockershare located in
$HOME

cat > mytestfile.html <<- EOF create a file from stdin until EOF

exit terminate a shell session

DISPLAY Environment variable to display graphical
interface under X11

Software within containers Comment

NGINX A web server

Dovex web-based quick exploration of datasets

RStudio Server web-based version of RStudio
interface to R

IGV Java-based “Integrative Genome Viewer”

X11 communication protocol for graphics
displays in Linux/Unix

xeyes , xclock , xlogo , xcalc X11 utilities

infoseq , plotorf , getorf , transeq ,
pepinfo , tmap

EMBOSS programs

12 APPENDIX A

12.1 Create shared directory

13 APPENDIX B
IRIS DATASET

Typically, the datasets in the archive separate data and information, including possible
column headers for the data file. this is why on this page there are 2 links as shown on the
image above:

cd $HOME
mkdir dockershare

12/19/2019 Docker - Beginner Biologist 4

file:///tmp/Docker_04.html 34/38

Data Folder is a link to archive.ics.uci.edu/ml/machine-learning-databases/iris/
(http://archive.ics.uci.edu/ml/machine-learning-databases/iris/) that provides a list
of files to download.
Data Set Description is a link to file iris.names (see below)

If you click on Data Folder a list appears:

Parent Directory
Index
bezdekIris.data
iris.data
iris.names

The 2 items of interest for today are: * iris.data and iris.names`.

You can manually download the files, but it is easier to use the web get command wget to
do so as shown below. We’ll save the files within the dockershare directory (see
APPENDIX A.)

We can briefly inspect the data files

5.1,3.5,1.4,0.2,Iris-setosa
4.9,3.0,1.4,0.2,Iris-setosa
4.7,3.2,1.3,0.2,Iris-setosa

This indicates that this is a comma-separated format (csv)with 5 columns and that
indeed there are no column headers. The relevant information is found within the
iris.names plain text file. You can use a word processor to open it, or simply use
cat iris.names to print its content onto the screen. The relevant information, also

found on the web page is:

cd $HOME/dockershare

wget http://archive.ics.uci.edu/ml/machine-learning-databases/iris/i
ris.data

wget http://archive.ics.uci.edu/ml/machine-learning-databases/iris/i
ris.names

show first 3 lines:
head -3 iris.data

12/19/2019 Docker - Beginner Biologist 4

file:///tmp/Docker_04.html 35/38

7. Attribute Information:
 1. sepal length in cm
 2. sepal width in cm
 3. petal length in cm
 4. petal width in cm
 5. class:
 -- Iris Setosa
 -- Iris Versicolour
 -- Iris Virginica

One way to add the headers could be to open the file in a word processor (or a spreadsheet
software) and add the column names (lines marked 1., 2., 3., 4., and 5.)

Alternatively, we can use simple bash script commands to extract the relevant
information and add it to the data.

The relevant information would vary from dataset to dataset and therefore the following
commands are specific to this version of the Iris dataset.

We can note that the word class: followed by colon only appears once in the iris.name
document. We can use that to “grab” this line as well as the 4 preceeding lines with
fgrep :

 1. sepal length in cm
 2. sepal width in cm
 3. petal length in cm
 4. petal width in cm
 5. class:

The next step is to transform this input to remove the numbers on the left side and some
blank space at the beginning of the line (cut), and place the content of each lines onto a
single line separated by a comma (paste):

sepal length in cm,sepal width in cm,petal length in cm,petal width
in cm,class:

For better clarity we can remove the redundant in cm and remove the colon after class:

fgrep -B4 "class:" iris.names

fgrep -B4 "class:" iris.names | cut -c 7-30 | paste -s -d ',' -

12/19/2019 Docker - Beginner Biologist 4

file:///tmp/Docker_04.html 36/38

sepal length ,sepal width ,petal length ,petal width ,class

Finally we can save this output into a new file, iris-names.csv and then append the data
below the column headers. Rewriting it all with line-continuation \ :

sepal length ,sepal width ,petal length ,petal width ,class
5.1,3.5,1.4,0.2,Iris-setosa
4.9,3.0,1.4,0.2,Iris-setosa

To download a copy the final file:

Note: “sepal length” with a trailing blank space is also unique and we could also use this
feature to find the next 4 lines instead: fgrep -A4 "sepal length " iris.names .

14 APPENDIX C
Windows users may run into more difficulties depending on set-up and admin privileges.
Docker with fancy variable commands will only run in PowerShell.

Here are useful links:

PowerShell: Environment Variables: https://docs.microsoft.com/en-
us/powershell/module/microsoft.powershell.core/about/about_environment_variables
(https://docs.microsoft.com/en-
us/powershell/module/microsoft.powershell.core/about/about_environment_variables)

fgrep -B4 "class:" iris.names | cut -c 7-30 | paste -s -d ',' - | se
d -e 's/in cm//g' -e 's/://g'

extract column names into a file
fgrep -B4 "class:" iris.names \
| cut -c 7-30 \
| paste -s -d ',' - \
| sed -e 's/in cm//g' -e 's/://g' > iris-names.csv

append data:
cat iris.data >> iris-names.csv

#check results with first 3 lines:
head -3 iris-names.csv

wget https://static-bcrf.biochem.wisc.edu/tutorials/docker/iris-name
s.csv

12/19/2019 Docker - Beginner Biologist 4

file:///tmp/Docker_04.html 37/38

Get started with Docker for Windows: https://docs.docker.com/docker-for-
windows/ (https://docs.docker.com/docker-for-windows/)
Unable to share drives:

https://github.com/docker/for-win/issues/2946
(https://github.com/docker/for-win/issues/2946)
https://github.com/docker/for-win/issues/1352
(https://github.com/docker/for-win/issues/1352)

REFERENCES
Scheifler, R. W., and J. Gettys. 1987. “The X Window System.” ACM Transactions on
Graphics 5 (2): 79–109. https://apps.hci.rwth-aachen.de/borchers-
old/cs377a/materials/p79-scheifler.pdf (https://apps.hci.rwth-aachen.de/borchers-
old/cs377a/materials/p79-scheifler.pdf).

1. https://docs.docker.com/install/ (https://docs.docker.com/install/)

2. https://docker-curriculum.com/#webapps-with-docker (https://docker-
curriculum.com/#webapps-with-docker)

3. https://en.wikipedia.org/wiki/Port_(computer_networking)
(https://en.wikipedia.org/wiki/Port_(computer_networking))

4. https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers#Well-
known_ports
(https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers#Well-
known_ports)

5. https://en.wikipedia.org/wiki/X_Window_System
(https://en.wikipedia.org/wiki/X_Window_System)

6. https://www.nginx.com/resources/glossary/nginx/
(https://www.nginx.com/resources/glossary/nginx/)

7. https://goinbigdata.com/docker-run-vs-cmd-vs-entrypoint/
(https://goinbigdata.com/docker-run-vs-cmd-vs-entrypoint/)

8. https://www.melbournebioinformatics.org.au/project/human-genomics/
(https://www.melbournebioinformatics.org.au/project/human-genomics/)

9. https://dovex.org (https://dovex.org)

10. https://hub.docker.com/r/rocker/rstudio
(https://hub.docker.com/r/rocker/rstudio)

11. https://hub.docker.com/r/rocker/rstudio/dockerfile
(https://hub.docker.com/r/rocker/rstudio/dockerfile)

12/19/2019 Docker - Beginner Biologist 4

file:///tmp/Docker_04.html 38/38

12. https://hub.docker.com/r/jupyter/datascience-notebook/tags
(https://hub.docker.com/r/jupyter/datascience-notebook/tags)

13. https://jupyter-docker-stacks.readthedocs.io/en/latest/index.html (https://jupyter-
docker-stacks.readthedocs.io/en/latest/index.html)

14. http://xquartz.macosforge.org/landing/ (http://xquartz.macosforge.org/landing/)

15. http://www.straightrunning.com/XmingNotes/
(http://www.straightrunning.com/XmingNotes/)

16. https://sourceforge.net/projects/vcxsrv/
(https://sourceforge.net/projects/vcxsrv/)

17. https://unix.stackexchange.com/questions/276168/what-is-x11-exactly
(https://unix.stackexchange.com/questions/276168/what-is-x11-exactly)

18. http://www.x.org/ (http://www.x.org/)

19. http://www.mit.edu (http://www.mit.edu)

20. http://software.broadinstitute.org/software/igv/
(http://software.broadinstitute.org/software/igv/)

21. http://emboss.sourceforge.net/docs/emboss_tutorial/node4.html
(http://emboss.sourceforge.net/docs/emboss_tutorial/node4.html)

22. https://bit.ly/2KFxUZe (https://bit.ly/2KFxUZe)

