

HTCondor@Biochem

Using HTCondor on the Biochemistry Computational Cluster
v1.5.0

Jean-Yves Sgro

Issued: 2021-12-28

© 2016 -2022

Jean-Yves Sgro

Biochemistry Computational Research Facility

jsgro@wisc.edu

Note: The HTCondor software was known as 'Condor' from 1988 until its

name changed in 2012.

 3

Foreword ... 5

What is HTCondor? .. 7

Cluster access overview .. 8

1. Text-based access.. 8

2. No graphical interface (X11) ... 9

3. VPN access.. 9

4. Login info .. 9

5. Login Splash Screen .. 9

6. Linux OS: CentOS... 10

Before you begin ... 11

The BCC Linux cluster .. 12

7. Overview.. 12

8. Connecting to the cluster... 13

9. Disk space, home directory, /scratch ... 13

10. File servers .. 14

11. Process .. 14

12. Getting ready ... 15

13. HTCondor file transfers .. 15

14. Beyond local cluster: Flocking .. 16

QuickStart ... 17

1. This section assumes that: .. 17

2. Connect and set-up a working space... 18

3. Create a simple executable test file ... 18

4. Create a simple submit file ... 19

5. Submit the job.. 20

6. Check output .. 20

7. Syntax ... 20

8. HTCondor version .. 21

9. Conclusion... 21

Resources / Help ... 22

On-line resources: ... 22

Foreword

4

HTCondor concepts.. 23

1. Class Ads... 23

2. Universes ... 26

3. Steps before running a job .. 26

4. Requirements and Rank .. 27

5. File transfer .. 28
5.1. Jobs with Shared File System ... 28
5.2. File Transfer Mechanism .. 28
5.3. File Paths for file transfer .. 29

6. Managing jobs .. 30

7. Job completion ... 31

8. Tag file names with job or process... 31

9. Example: environment variables.. 31

10. Transfer of environment: getenv ... 33

Library dependencies ... 35

1. FORTRAN 77: Hello World example .. 35

2. FORTRAN 95: gfortran .. 37
2.1. Static linking ... 37

3. Compiling ... 39

4. Standard Universe .. 39

5. Compiling R ... 39
5.1. Download R... 40
5.2. Install ... 40

5.2.1. Note: Problem with Zlib in newer version... 41
5.3. R additional packages .. 41

Interactive Jobs ... 42

6. Interactive shell .. 42

File transfer from research.drive.wisc.edu .. 45

1. Moving files on and off the cluster: .. 45

2. Useful commands.. 45

 5

Foreword

This tutorial is meant to learn about using HTCondor on the Biochemistry

Computational Cluster (BCC).

The BCC runs under Linux and therefore all examples will be shown for this

operating system.

As a general guide, some marks are placed along most of the tutorials to

indicate action to be taken by the reader:

$ command to be typed

often typewritten styled text illustrates a software output.

This is a very short description of the Biochemistry cluster and HTCondor.

Further information about creating job submission files should be studied

within the HTCondor online manual (see On-line resources: on page 22.)

 7

What is HTCondor?

HTCondor is a “scheduler” system that dispatches compute jobs to one and up

to a very large number of “compute nodes” that actually perform the

calculations.

HTCondor is developed by the Computer Sciences Department at the

University of Wisconsin-Madison. The HTCondor web page1 contains a long

description. Here is the first, summary-like paragraph:

HTCondor is a specialized workload management system for
compute-intensive jobs. Like other full-featured batch systems,
HTCondor provides:

- a job queueing mechanism,
- scheduling policy,
- priority scheme,
- resource monitoring, and
- resource management.

Users submit their serial or parallel jobs to HTCondor, HTCondor
places them into a queue, chooses when and where to run the
jobs based upon a policy, carefully monitors their progress, and
ultimately informs the user upon completion.

Note: Using HTCondor is the only approved method for

performing high throughput computing on the BCC Linux

cluster.

Jobs have to be ready to be processed by HTCondor as jobs cannot be

interactive on the cluster.

1 http://research.cs.wisc.edu/htcondor/description.html

 8

Cluster access overview

The Biochemistry Computational Cluster (BCC) is a High Throughput

Computing (HTC) environment within the UW-Madison Biochemistry

Department. HTC provides rapid, parallel computing on a large number of

small jobs.

 Note: this is different from High Performance Computing (HPC) which allows

computation on large datasets in large memory footprints.

If you require HPC rather than HTC, or if you are not part of the Biochemistry

department, you may obtain a free account at the “Center for High Throughput

Computing (CHTC)” at http://chtc.cs.wisc.edu:

“Standard access to CHTC resources are provided to all UW-Madison

researchers, free of charge.”

1. Text-based access
The BCC cluster must be accessed via secure shell (ssh) with a text-based

Terminal from a local computer. There is NO GUI interface available. For

example:

- Macintosh: /Applications/Terminal

- Linux: Terminal or Shell

- Windows: install free software e.g. PuTTY or MobaXterm

Note: The "submit" node is the only computer accessible to users, and

jobs will be passed on to the larger hardware portions of the cluster that are not

accessible directly to users.

The text-based commands used is bash

http://chtc.cs.wisc.edu/

 No graphical interface (X11)

 9

2. No graphical interface (X11)
Important note: there is no graphical user interface (GUI) available in any form

as the X11 graphical base is not installed on the operating system.

Therefore, the only mode of action is via text-based access as described

above.

Note: The ssh modifier -Y would not allow GUI either.

3. VPN access
Access from outside the Biochemistry department requires a VPN connection:

VPN connection:

If connecting from outside the Biochemistry department it will be

necessary to connect via a Virtual Private Network (VPN) to mimic

local presence.

Please refer to the following resources to install and activate VPN:

General University description:

https://it.wisc.edu/services/wiscvpn/

4. Login info
From a text-based terminal use ssh to login:

 ssh myname@submit.biochem.wisc.edu

where myname is your NetID. Your NetID Password will be required

after you press return.

For more information about NetID see:

• Activating Your Account: https://kb.wisc.edu/page.php?id=1140

• Getting authorized for BCC access: email Jean-Yves Sgro: jsgro@wisc.edu

5. Login Splash Screen
After login you will see the following screen:

https://it.wisc.edu/services/wiscvpn/
https://kb.wisc.edu/page.php?id=1140
mailto:jsgro@wisc.edu

Cluster access overview

10

* Welcome to the UW-Madison Biochemistry Computational Cluster *

* *

* USE /scratch FOR JOB DATA! DO NOT STORE DATA IN YOUR USER FOLDER!!! *

* MOVE YOUR RESULTS TO OTHER STORAGE AFTER YOUR JOB COMPLETES, ALL DATA *

* MAY BE REMOVED BY ADMINISTRATORS AT ANY TIME!!! *

* *

* This computer system is for authorized use only. *

* *

* You must receive permission to access this system. Please contact the *

* Biochemistry Computational Research Facility for training and access. *

* https://bcrf.biochem.wisc.edu/bcc/ *

6. Linux OS: CentOS
There are many Linux versions. On the BCC the version installed is called

“CentOS” which is derived from “Red Hat Linux.”

The version installed can be obtained with the command:

cat /etc/redhat-release

CentOS Linux release 7.9.2009 (Core)

The uname command can be used to obtain further information with -a

printing all info:

$ uname -a

Linux biocwk-01093l.ad.wisc.edu 3.10.0-

1160.45.1.el7.x86_64 #1 SMP Wed Oct 13 17:20:51

UTC 2021 x86_64 x86_64 x86_64 GNU/Linux

Noteworthy: x86_64 means it is a 64 bit system and el7 means “Enterprise

Linux version 7” meaning that it is derived from the Enterprise Linux 7 version

from the company Red Hat. Links:

Logo Name Link

CentOS https://www.centos.org

redhat https://www.redhat.com

https://www.centos.org/
https://www.redhat.com/

 11

Before you begin

Using HTCondor requires knowledge of the Linux/Unix Shell bash

command-line and information about how the cluster is set-up.

There are many preparation steps that will take time to organize. The first

question to ask is “Why do I need to use the BCC and therefore

HTCondor?” and validate for yourself the reasons why that would make

things better for your computation.

If you decide that HTCondor will be useful, you will then need to evaluate how

the software you want to use can work on the BCC Linux cluster. It may also

be required that you “compile” the software yourself. There is no pre-installed

software other than the Linux OS itself.

Jobs running on BCC can take advantage of the /scratch directory as the

local HTCondor is aware of its existence. However, that would not apply to

jobs sent outside of the cluster.

Jobs have to be able to run in “batch” mode i.e. non-interactively. This means

that you need to know what the software will require to run, such as input

file(s) or ancillary data files.

Summary of what you need & need to know.

This will be reviewed further:

Username: Your UW-Madison NetID username and password

Login to: submit.biochem.wisc.edu

Cluster: Understand that /scratch is the main work place

bash shell: Understand commands such as cd, ls, mkdir, etc.

Software: Understand all requirements of the software to run

 12

The BCC Linux cluster

7. Overview
The Biochemistry Computational Cluster (BCC) is a High Throughput

Computing (HTC) environment within the UW-Madison Biochemistry

Department.

The cluster can be described as a set of 10 computers connected to each other

and sharing a common disk space allocation. As these are not really computers

with a keyboard, a mouse and a screen they are typically referred to as

“nodes.”

Only one node is accessible directly to users to submit jobs to the other 9

nodes. This node is called the “Submit Node” which also plays a role in job

control. One could view the set-up in this simplified hierarchy:

Therefore all jobs and interaction have to go through

the Submit node that will dispatch jobs, or job portions to other nodes.

This means that the required calculations have to run in batch, non-

interactive mode.

The Submit node controls 2 Tb of disk space made available and shared with

the other nodes. Each compute node also has a 240 Gb of space to use while

performing calculations and is therefore not useable as storage space.

The compute nodes are also equipped with state of the art graphics chips

(GPU) that can be specifically requested for calculations by software that are

2Tb disk

Submit

Node 1 Node 2 Node 3 Node 4 Node 4 Node 5 Node 6 Node 7 Node 8 Node 9

 Connecting to the cluster

 13

GPU-aware and can greatly accelerate calculations. However, note that some

software require specific GPU architecture. Since computations are not to

occur on the submit node, this computer does not have a GPU.

The hardware specific data for the cluster is as follows:

Submit Node

▪ 2 x Intel Xeon E5-2650v2 8-Core 2.60 GHz (3.4GHz Turbo)

▪ Over 2TB of SSD based RAID 5 scratch disk space shared with each

BCC computational node

▪ 128 GB DDR3 1866 ECC/REG Memory

▪ 10G Ethernet networking

9 x Dedicated Computation Node

▪ 2 x Intel Xeon E5-2680v2 10-Core 2.80 GHz (3.60GHz Turbo)

▪ 64 GB DDR3 1866 ECC/REG Memory

▪ 1 x NVIDIA Tesla K20M GPU

▪ 1 x 240 GB SSD

▪ 10G Ethernet networking

8. Connecting to the cluster
Only the “Submit Node” is accessible to users via a text-based terminal

connection with the secure shell command:

Login with ssh myname@submit.biochem.wisc.edu where myname

is your NetID and your Password will be required after you press return.

You need to be authorized to access BCC (see Login info on page 9.)

9. Disk space, home directory, /scratch
The default home directory is mapped according to the username and has a

long, default name reflecting how the NetID username is “mapped” to the

BCC cluster.

If myname represents NetID the default $HOME directory will be mapped as

shown below after a pwd command:

/home/myname@ad.wisc.edu

The BCC Linux cluster

14

Important note: the default $HOME directory should NOT be used as the

primary location for storage, or for HTCondor job submission. HTCondor

cannot “see” your home directory

The main work area is called /scratch and should be used for all jobs.

In addition, HTCondor cannot “see” your home directory but is aware of the

/scratch Directory.

HTCondor nodes are set-up in similar ways, and typically they all understand

the shared disk space known as /scratch

Each user should therefore create a working directory

within /scratch and work from there rather than the

default $HOME directory.

10. File servers
File server research.drive.wisc.edu is accessible from within the

cluster as “mounted” volumes within /mnt/rdrive/labname where

labname is the name of the lab.

These mounted volumes are not visible by HTCondor.

See Moving files on and off the cluster: on page 45

11. Process
The fundamental process consists of submitting a “job file” that contains

information on how to run the software that needs to be run with all optional

input and ancillary files.

Typically, one would need to create a shell script (*.sh) that can run the desired

software, and then create another, submit script (*.sub) that would submit the

shell script to HTCondor that will schedule the job.

 Getting ready

 15

After the run has completed successfully provisions exists within the *.sub file

to transfer all created files to e.g. back to /scratch

12. Getting ready
To get ready you need to evaluate what was just mentioned in the Process

paragraph above backwards:

13. HTCondor file transfers
Part of the HTCondor method is to transfer files (sometimes all files and

software binaries) to a temporary directory, run the job and copy the output

files back to your permanent working directory (e.g. on /scratch) upon

completion.

HTCondor runs on a temporary directory that changes every time. For

example, this directory could be called:

 TMPDIR=/var/lib/condor/execute/dir_30471

This directory and all its files will disappear once the job is done. For the

next job the directory would have a different name.

When the job starts, all the necessary files (e.g. hello.sh, hello.sub) are

*.sub

*.sh

software and files

*.sub: final step, create HTCondor submit file

*.sh: create a job that runs hands off , in batch mode.

software and files: know what and how to run, with
dependencies

/scratch/myname/quickstart/ /var/lib/condor/execute/dir_arbitrary_number

The BCC Linux cluster

16

transferred to a temporary directory (dark arrow.) When the job is done, output

files created by the job are transferred back to the originating (or specified)

directory (white arrow.)

14. Beyond local cluster: Flocking
When jobs are big, it may be useful to access computers that are beyond that of

the Biochemistry cluster itself.

This can be done safely even with proprietary software as files are invisible to

others and cannot be copied.

Sending files outside of BCC is a special case called “Flocking” and it may be

necessary to adjust the submit command file to either be more “generic” or

provide more details of files to be transferred, for example files that are not

standard on other systems.

In particular the /scratch directory would not be visible on these other

computers and therefore cannot be used.

See also the Center for High Throughput Computing (CHTC) at

http://chtc.cs.wisc.edu

http://chtc.cs.wisc.edu/

 17

QuickStart

This QuickStart section is inspired by the online QuickStart option shown on

the HTCondor web pages (see below on page 22.)

1. This section assumes that:
Assumption Check / Set-up on BCC

HTCondor is running HTCondor is installed on BCC

You have access to a machine within the pool

that may submit jobs, termed a submit machine
IP Address:
submit.biochem.wisc.edu

You are logged in to and working on the submit

machine

Your username is your UW-

Madsion NetID and password

Your program executable, your submit

description file, and any needed input files are all

on the file system of the submit machine

You should work in the

/scratch directory

Your job (the program executable) is able to run

without any interactive input. Standard input

(from the keyboard), standard output (seen on

the display), and standard error (seen on the

display) may still be used, but their contents will

be redirected from/to files.

We will run a test file that

complies with these requirements.

It is also assumed that you know how to converse within the line command and edit simple

text files e.g. with text editor nano.

QuickStart

18

2. Connect and set-up a working space
We’ll follow the above table process.

First, we connect and create a directory in the shared data space.

Use YOUR NetID to connect – represented here as myname

You should open a text-based terminal from your local machine (see page 8,)

and then issue the connect command: [replace myname with your login name.]

$ ssh myname@submit.biochem.wisc.edu

Then move to /scratch and create a directory with your name and another

directory within to work with as your project e.g. quickstart.

$ cd /scratch

$ mkdir -p myname/quickstart

#replace myname with e.g. YOUR ID

$ cd myname/quickstart

3. Create a simple executable test file
Using the nano word processor on the cluster or a copy/paste method we now

create a file to be executed by HTCondor.

$ nano hello.sh

Within the file enter the following:

#!/bin/sh

echo "Hello World"

If you are using nano, use Ctrl-X to exit from edit mode to save the file.

Now we make sure that the file is executable:

$ chmod u+x hello.sh

 Create a simple submit file

 19

4. Create a simple submit file
The submit file contains information for running a job and is passed to

HTCondor. The following file is a minimal file, more information could be

provided to HTCondor for more job control.

$ nano hello.sub

Then enter the following text within the file and save:

executable = hello.sh

should_transfer_files = Yes

output = hello.out

error = hello.err

log = hello.log

queue

Blank lines are ignored

Upper/Lower case is ignore on the left side of the equal sign.

Line 1 specifies the file to run

Line 2 requests necessary files to be transferred

Line 3 – 5 specify the name of the standard output files

Line 6 places the job in the queue so it can be run.

The following implicit assumptions are made:

- echo - general-use Linux Bash commands are available

- the process will use standard input, standard output and

standard error (stdin, stdout, stderr.)

QuickStart

20

5. Submit the job
We now follow the example with the cascade steps of submitting a file

(hello.sub) containing information about an executable (hello.sh) that

is calling on a software (echo) that will create some output files

(hello.out, etc.) that will be transferred to the local directory when the job

is done.

The submit command is as follows:

$ condor_submit hello.sub

6. Check output
The job will be queued and executed rather rapidly, transferring output files to

the local directory when done:

$ ls

hello.err hello.out hello.sub

hello.log hello.sh

We can verify that the job executed correctly:

$ cat hello.out

Hello World

7. Syntax
This is a very simple example.

Clearly, if we were to run this example again the files that we just created

would be overwritten (clobbered) by the files created by the new run.

This and many other aspects of job control can be overcome by specific

HTCondor command syntax.

For example, unique numbers could be created for the output files with syntax

hello.sub

hello.sh

software (echo) and files (hello.out, hello.err, hello.log)

 HTCondor version

 21

such as:

Error = logs/err.$(cluster)

Output = logs/out.$(cluster)

Log = logs/log.$(cluster)

Or

error = err.$(Process)

input = in.$(Process)

output = out.$(Process)

See examples in the manual under the “Submitting a Job” section for details.

For version 8.6 the link is:

 http://research.cs.wisc.edu/htcondor/manual/v8.6/2_5Submitting_Job.html

See also: Tag file names with job or process on page 31.

8. HTCondor version
The current version of the HTCondor software running is obtained with the

command condor_version:

$ condor_version

$CondorVersion: 8.6.13 Oct 30 2018 BuildID: 453497 $

$CondorPlatform: x86_64_RedHat7 $

(This is the installed version on BCC as of December 28, 2021.

The most recent version of the manual is always available at

http://research.cs.wisc.edu/htcondor/manual/

9. Conclusion

The complete HTCondor manual for version 8.6 is 1128
pages long!
Therefore, the virtue of patience needs to be called
upon to tackle and master using a cluster running
HTCondor!

http://research.cs.wisc.edu/htcondor/manual/v8.6/2_5Submitting_Job.html
http://research.cs.wisc.edu/htcondor/manual/

 22

Resources / Help

Now that you know how to log-in and run the simplest job, here are resources

to go further and learn how to use HTCondor with your own software.

On-line resources:

Resource Link

HTCondor Quick

Start Guide

http://research.cs.wisc.edu/htcondor/manual/

quickstart.html

Complete manual* http://research.cs.wisc.edu/htcondor/manual/

*You can check which manual you need by checking which version of

HTCondor is installed with command: condor_version (see above.)

It is highly advised to get acquainted with some of
this material before attempting any complex
calculations on the cluster.

For general HTCondor questions contact chtc@cs.wisc.edu

For Biochemistry related questions contact jsgro@wisc.edu

For general Biochem IT/network issues contact helpdesk@biochem.wisc.edu

http://research.cs.wisc.edu/htcondor/manual/quickstart.html
http://research.cs.wisc.edu/htcondor/manual/quickstart.html
http://research.cs.wisc.edu/htcondor/manual/
http://research.cs.wisc.edu/htcondor/manual/
mailto:chtc@cs.wisc.edu
mailto:jsgro@wisc.edu
mailto:helpdesk@biochem.wisc.edu

 23

HTCondor concepts

We have already learned perhaps the most important command which is the

one use to submit a job: condor_submit

The list of HTCondor commands is rather long: about 70. However, for most

users and everyday use just a few are essential, for example to start, stop, hold,

restart, and list submitted jobs.

1. Class Ads

Before you learn about how to submit a job, it is important to
understand how HTCondor allocates resources.
 HTCondor manual

ClassAds in HTCondor are comparable to classified ads in a newspaper.

Sellers advertise what they sell; buyers may advertise what they wish to buy;

both buyers and sellers have specifics and conditions.

Compute nodes ClassAds actively advertise lists of attributes and resources

available. For example: the type of CPU (Intel) and its speed, memory (RAM)

available, operating system (Linux, Mac, Windows) etc.

Therefore, jobs can be submitted with either generic or very stringent

requirements, via a specific syntax within the *.sub submit file.

For example, a user may require that the compute node be equipped with a

graphical processor unit (GPU) and a minimum amount of RAM, for example

64Mb, but with a preference for 256Mb is possible. Many other requirements

can be added, depending on the software to be run by the job.

ClassAds advertised by both nodes and jobs are continuously read by

HTCondor that will match requests and verify that all requirements for both

ClassAds are met.

HTCondor concepts

24

The HTCondor command condor_status provides a summary of the

ClassAds in the pool:

H

e

r

e

a

r

e

Here are a few lines from a -long command, truncated on both ends. This

command will report all information for all cpus of all nodes and would output

a total of 69,604 lines!)

A few useful information such as memory or Linux OS are shown in bold

below:

[truncated above]
LastUpdate = 1527862877

LoadAvg = 1.0

Machine = "cluster-0001.biochem.wisc.edu"

MachineMaxVacateTime = 10 * 60

MachineResources = "Cpus Memory Disk Swap GPUs"

MAX_PREEMPT = (3 * 3600)

MaxJobRetirementTime = MAX_PREEMPT * TARGET.OriginSchedd ==

"submit.biochem.wisc.edu"

Memory = 1024

Mips = 27186

MonitorSelfAge = 2159646

MonitorSelfCPUUsage = 1.720120371398834

MonitorSelfImageSize = 80268

H
T

C
o

n
d

o
rNodes

ClassAds

Matched:

run Job on Node

Jobs

Class Ads

condor_status -avail
shows only machines which are willing to

run jobs now.

condor_status -run
shows only machines which are currently

running jobs for your username.

condor_status -help provides a list of many other options.

condor_status -long

lists the machine ClassAds for all machines

in the pool. But the output is very long:

about 100 ClassAds per compute node.

 Class Ads

 25

MonitorSelfRegisteredSocketCount = 39

MonitorSelfResidentSetSize = 10100

MonitorSelfSecuritySessions = 122

MonitorSelfTime = 1530022493

MyAddress = "<128.104.119.168:9618?addrs=128.104.119.168-

9618+[--1]-9618&noUDP&sock=1782_e1db_3>"

MyCurrentTime = 1530022541

MyType = "Machine"

Name = "slot1_1@cluster-0001.biochem.wisc.edu"

NextFetchWorkDelay = -1

NiceUser = false

NumPids = 1

OfflineUniverses = { }

OpSys = "LINUX"

OpSysAndVer = "CentOS7"

OpSysLegacy = "LINUX"

OpSysLongName = "CentOS Linux release 7.5.1804 (Core)"

 [truncated here]

The list contains about 100 attributes “advertised” continuously in order to

match jobs with nodes.

Here are output examples (shortened by the |head command limiting output

to 5 lines)

$ condor_status | head -5

Name OpSys Arch State Activity LoadAv Mem ActvtyTime

slot1@cluster-0002 LINUX X86_64 Unclaimed Idle 0.170 42887 30+00:18:21

slot1_10@cluster-0 LINUX X86_64 Claimed Busy 1.000 512 3+23:01:35

slot1_11@cluster-0 LINUX X86_64 Claimed Busy 1.000 512 3+23:01:35

$ condor_status -avail | head -5

Name OpSys Arch State Activity LoadAv Mem ActvtyTime

slot1@cluster-0002 LINUX X86_64 Unclaimed Idle 0.170 42887 30+00:18:21

slot1@cluster-0003 LINUX X86_64 Unclaimed Idle 0.000 43911 30+00:30:36

slot1@cluster-0004 LINUX X86_64 Unclaimed Idle 0.000 39303 30+00:22:31

Summary: ClassAds reflect the resources of compute nodes and
the requirements of user jobs.
HTCondor matches requirements from both.

HTCondor concepts

26

2. Universes

HTCondor has several runtime environments (called a universe)
from which to choose. Of the universes, two are likely choices
when learning to submit a job to HTCondor: the standard
universe and the vanilla universe.
 Condor manual

HTCondor supports different execution environment called universe:

A universe in HTCondor defines an execution environment. HTCondor

Version 8.6.11 supports several different universes for user jobs:

• standard

• vanilla

• grid

• java

• scheduler

• local

• parallel

• vm

• docker

On the BCC the default universe is Vanilla and other choices would be

specified in the submit description file. Universes other than Vanilla require

specific considerations that will not be mentioned in this document.

Note: While it is the default it is considered good practise to specify the

universe within the submit file as the default could be changed at a later date

by the system administration of the compute cluster, or could be different on

another computer you might use.

3. Steps before running a job
This was discussed in a previous section (see Process on page 14) and

reviewed here in the light of information from the manual.

Code preparation. Jobs must be able to run in batch, non-intereactive mode.

A program that runs in the background will not be able to do interactive input

and output. HTCondor can redirect console output (stdout and stderr)

and keyboard input (stdin) to and from files for the program (these standards

are part of the operating system.) Create any needed files that contain the

proper keystrokes needed for software input. Make certain the software and

 Requirements and Rank

 27

scripts run correctly with the files.

HTCondor Universe. The Vanilla universe is the default. The Standard

universe requires explicit recompilation of the software with HTCondor

libraries and is for advanced users.

Submit description file. This plain text file contains details of the job to run,

what software (executable) to run, and information about files to transfer, etc.

The file can contain explicit requirements that HTCondor will match with

compute nodes in terms of ClassAd.

Submit the job. The command condor_submit is used to submit the job

described in the job description file.

Once submitted, HTCondor does the rest toward running the job. Monitor the

job’s progress with the condor_q and condor_status commands.

You may modify the order in which HTCondor will run your jobs with

condor_prio.

You can remove a job from the queue prematurely with condor_rm.

Log file. It is recommended to request a log file for the job within the submit

file. Exit status (success or failure) and various statistics about its

performances, including time used and I/O performed will be included in the

log file.

4. Requirements and Rank
Using the requirements and rank commands in the submit description

file is powerful, flexible and requires care. Default values are set by the

condor_submit program if these are not defined in the submit description

file

For example, the following commands within a submit description file:

request_memory = 32

rank = Memory >= 64

require HTCondor to run the program on machines which have at least 32 Mb

of physical memory, and the rank command expresses a preference to run on

machines with more than 64 Mb.

The commands can use comparison operators: <, >, <=, >=, and == are case

insensitive and special comparison operators =?= and =!= compare strings case

sensitively.

HTCondor concepts

28

Please refer to the complete HTCondor manual for more details on the usage of

these commands.

5. File transfer
The HTCondor manual has more details on this subject and should also be

consulted

5.1. Jobs with Shared File System

HTCondor is aware of the files present in the /scratch directory (see Disk

space, home directory on page 13) since the BCC has a shared file system to

access input and output files.

Defaults requirements exist so that compute nodes can share the same data. If

you place your data in e.g. /scratch/myname/somedirectory it

should be visible by any compute node to run your job.

5.2. File Transfer Mechanism

While the BCC offers a shared file system, there are situations when it may

still be appropriate to proceed as if that was not the case, for example if the job

is very large and one wants to “flock” the job to a larger grid at CHTC or even

the Open Science Grid. In this case a shared file system would not be available

to computers outside of the local area.

The HTCondor file transfer mechanism permits the user to
select which files are transferred and under which
circumstances. HTCondor can transfer any files needed by a
job from the machine where the job was submitted into a
remote temporary directory on the machine where the job is
to be executed.

HTCondor executes the job and transfers output back to the
submitting machine. The user specifies which files and
directories to transfer, and at what point the output files
should be copied back to the submitting machine. This
specification is done within the job’s submit description file.
 Condor manual

 File transfer

 29

To enable the file transfer mechanism, place two commands in the job’s submit

description file: should_transfer_files and

when_to_transfer_output.

By default, they will be:

should_transfer_files = IF_NEEDED

when_to_transfer_output = ON_EXIT

Setting the should_transfer_files command explicitly enables or

disables the file transfer mechanism. The command takes on one of three

possible values:

▪ YES

▪ IF_NEEDED

▪ NO

Specifying What Files to Transfer: If the file transfer mechanism is enabled,

HTCondor will transfer the following files before the job is run on a remote

machine:

1. the executable, as defined with the executable command

2. the input, as defined with the input command

If the job requires other input files, the submit description file should

utilize the transfer_input_files command as a comma-separated

list.

5.3. File Paths for file transfer

The file transfer mechanism specifies file names and/or paths on
both the file system of the submit machine and on the file system
of the execute machine. Care must be taken to know which
machine, submit or execute, is utilizing the file name and/or
path.
 HTCondor manual

See manual for more details. Files can also be transferred by URL (http) e.g.

using the wget command

HTCondor concepts

30

6. Managing jobs
Once a job has been submitted HTCondor will attempt to find resources to run

the job (match the ClassAd from the job requirements with those advertised by

the compute nodes.)

Specific commands can be used to monitor jobs that have already been

submitted.

A list of submitted jobs, by whom, can be obtained with:

condor_status -submitters

Job progress can be assessed with:

condor_q

This job ID provided by the previous command condor_q can be used to

remove that job if it not longer needed, for example of the ID is 77.0 the

command would be:

condor_rm 77.0

The job would be terminated and all files discarded.

Jobs can be placed on hold and then released with the commands specifying

the job ID:

condor_hold 78.0

condor_release 78.0

A list of jobs in the hold state can be obtained:

condor_q -hold

or the reason for their holding:

condor_q -hold 78.0

If a job is not running, wait 5 minutes so that ClassAd have been negociated,

and then check with the command: (see more in the manual.)

condor_q -analyze

Finally, some jobs may be able to have their priority altered by the

condor_prio command.

 Job completion

 31

7. Job completion

When an HTCondor job completes, either through normal means
or by abnormal termination by signal, HTCondor will remove it
from the job queue. That is, the job will no longer appear in the
output of condor_q, and the job will be inserted into the job
history file.
Examine the job history file with the condor_history
command. If there is a log file specified in the submit description
file for the job, then the job exit status will be recorded there as
well.
 HTCondor manual

Statistics about the job will be included in the log file if it was requested within

the submit file, as it is strongly suggested.

8. Tag file names with job or process
There are methods to tag the name of files by job name, process number, the

compute node or the cluster name as a command within the submit file. For

example:

output = $(job)_$(Cluster)_$(Process).out

The commands of the style $(name) are the method that HTCondor handles

variables with proper set-up.

9. Example: environment variables
 Here is a small example putting things together with a submit and executable

file.

environ.sub submit file:

executable = run_environ.sh
output = run_environ_$(Cluster).out

error = run_environ_$(Cluster).err

log = run_environ_$(Cluster).log

should_transfer_files = YES

HTCondor concepts

32

when_to_transfer_output = ON_EXIT

request_cpus =1

queue 1

run_environ.sh executable file:

#!/bin/sh
echo "this is running!"

pwd > test.out

ls >> test.out

printenv >> test.out

submit the job:

$ condor_submit environ.sub
Submitting job(s).

1 job(s) submitted to cluster 3775.

We can see the status of the job:

$ condor_q
-- Schedd: submit.biochem.wisc.edu : <128.104.119.165:9618?... @ 06/26/18

09:39:33

OWNER BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS

jsgro CMD: run_environ.sh 6/26 09:38 _ _ 1 1 3775.0

1 jobs; 0 completed, 0 removed, 1 idle, 0 running, 0 held, 0 suspended

The job runs quickly and the result files are transferred back, as shown with this list:

$ ls
environ.sub run_environ_3775.out

run_environ_3775.err run_environ.sh

run_environ_3775.log test.out

The executable file (run_environ.sh) created a standard output that captured within

file run_environ_3775.out and will contain a single line with “this is

running!”

The file test.out created by the executable will contain the directory name on the

compute node and then the values of environment variables:

 Transfer of environment: getenv

 33

$ cat test.out
/var/lib/condor/execute/dir_6663

_condor_stderr

_condor_stdout

condor_exec.exe

test.out

_CONDOR_JOB_PIDS=

_CONDOR_ANCESTOR_1864=4326:1527864152:618879280

TMPDIR=/var/lib/condor/execute/dir_6663

_CONDOR_SCRATCH_DIR=/var/lib/condor/execute/dir_6663

_CHIRP_DELAYED_UPDATE_PREFIX=Chirp

TEMP=/var/lib/condor/execute/dir_6663

BATCH_SYSTEM=HTCondor

_CONDOR_CHIRP_CONFIG=/var/lib/condor/execute/dir_6663/.chirp.

config

_CONDOR_ANCESTOR_4326=6663:1530024011:1517681191

PWD=/var/lib/condor/execute/dir_6663

CUDA_VISIBLE_DEVICES=10000

_CONDOR_AssignedGPUs=10000

_CONDOR_ANCESTOR_6663=6668:1530024013:4039808267

_CONDOR_SLOT=slot1_2

SHLVL=1

_CONDOR_MACHINE_AD=/var/lib/condor/execute/dir_6663/.machine.

ad

TMP=/var/lib/condor/execute/dir_6663

GPU_DEVICE_ORDINAL=10000

OMP_NUM_THREADS=1

_CONDOR_JOB_AD=/var/lib/condor/execute/dir_6663/.job.ad

_CONDOR_JOB_IWD=/var/lib/condor/execute/dir_6663

_=/usr/bin/printenv

This example illustrates that the directory where calculations happen is different every

time. In this example it is /var/lib/condor/execute/dir_6663

10. Transfer of environment: getenv

At BCC we had a situation where a script would fail as a job but ran perfectly fine as an

interactive test (at the shell prompt) or as an Interactive HTCondor job. The solution was

to add one line to the submit file:

getenv = true

The following explanation was given by CHTC personnel:

HTCondor concepts

34

This can happen because the environment is subtly different
between the two -- the interactive job inherits all of your usual
shell environment, but the batch job doesn't.

To address this, you can use this option in the submit file:

getenv = true

This will emulate the interactive environment in the batch job
and hopefully solve your problem there.

In the next section we’ll learn about specifying local library dependencies.

 35

Library dependencies

Software exist in the form of binary files, but often rely also on external

“libraries” that are required. In some cases, the software can be compiled

specifically to incorporate the libraries within its own binary file in order to

eliminate external dependencies. However, this is not always possible and a

method to deal with external libraries exist within HTCondor: the

LD_LIBRARY_PATH environment variable.

For example:

LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/scratch/myname/lib

(replace myname with your directory name; in bash use the export

command.)

Question: Why/When would I need this?

On the BCC Linux cluster, you will need to use this method if any of your

software is written in the FORTRAN language as the FORTRAN libraries are

not available on a default, modern Linux installation.

Note: this is true even if you compile with the “-static” or equivalent

option(s) as will be shown in the following, simple example.

1. FORTRAN 77: Hello World example

UPDATE: SKIP THIS PARAGRAPH

 f77 and g77 are no longer installed on the cluster.
This section is kept here for general information about the use of
the LD_LIBRARY_PATH option.

All FORTRAN program to be run on the BCC Linux cluster will require this

Library dependencies

36

step.

FORTRAN programs can be compiled with the compilers f77 or g77 each

with specific modifiers.

Let’s create a minimal “Hello World!” FORTRAN 772 program that prints

to standard output, save it in a file called hello77.f for example:

 PROGRAM HELLO

 WRITE(*,*) 'Hello, world!'

 END

Then we can compile the program with the mode to request that external

libraries be included in the final binary. This “switch” is different for both

compiler options:

$ g77 -fno-automatic hello77.f -o hello77_static_g77

$ f77 -Bstatic hello77.f -o hello77_static_f77

In practise, the resulting binary has the same size as if the “static” option was

not invoked (this can be verified with the Unix command ls -l to list files.)

Running the file interactively within the shell will always work:

$./hello77_static_f77

Hello, world!

However, running this file with HTCondor on the BCC Linux cluster will

cause an error to be reported and the program will FAIL:

./hello77_static_f77: error while loading shared

libraries: libg2c.so.0: cannot open shared obje

ct file: No such file or directory

This is true for ALL FORTRAN programs. Therefore there will be a

requirement for a SYSTEM library, defined within the *.sh script file. This

will tell the executable program where the necessary library is located.

The following example takes advantage to the fact that /scratch is a shared

volume. Therefore, after copying the “libg2c.so.0” library to

/scratch/myname/lib a minimal script file could be written as:

2 Examples for many languages can be found at

http://en.wikipedia.org/wiki/List_of_Hello_world_program_examples

[ARCHIVED 11APR2015 at

https://web.archive.org/web/20150411170140/http://en.wikipedia.org/wiki/List_of_Hello_world_program_e

xamples SHORT URL: https://bit.ly/2N3dit8

 FORTRAN 95: gfortran

 37

#!/bin/bash

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/scratch/myname/lib

run the program:

./hello77_static_f77

IF there is no shared volume on the cluster, the necessary library or libraries

could be placed in a “lib” directory to be transferred with the other files at

submission and a relative path could be created. For example:

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:./lib

2. FORTRAN 95: gfortran
gfortran (also called f95 on the BCC Linux cluster) is GNU FORTRAN

and is the software to use.

$ gfortran --version

GNU Fortran (GCC) 4.8.5 20150623 (Red Hat 4.8.5-28)

Copyright (C) 2015 Free Software Foundation, Inc.

GNU Fortran comes with NO WARRANTY, to the extent permitted by law.

You may redistribute copies of GNU Fortran

under the terms of the GNU General Public License.

For more information about these matters, see the file named COPYING

The general compilation format is:

$ gfortran hello77.f -o hello77_gfortran

2.1. Static linking

From the GNU web site3:

gfortran is composed of two main parts: the compiler, which creates
the executable program from your code, and the library, which is
used when you run your program afterwards. That explains why, if
gfortran is installed in a non-standard directory, it may compile your
code fine but the executable may fail with an error message
like library not found . One way to avoid this (more ideas can be

found on the binaries page) is to use the so-called "static linking",
available with option -static gfortran then put the library code inside

the program created, thus enabling it to run without the library

3 https://gcc.gnu.org/wiki/GFortranGettingStarted

Library dependencies

38

present (like, on a computer where gfortran is not installed).
Complete example is:

gfortran -static myfile.f -o program.exe

However, just doing this causes an error on the cluster:

$ gfortran -static hello77.f -o hello77_static_gfortran

/usr/bin/ld: cannot find -lgfortran

/usr/bin/ld: cannot find -lm

/usr/bin/ld: cannot find -lquadmath

/usr/bin/ld: cannot find -lm

/usr/bin/ld: cannot find -lc

collect2: error: ld returned 1 exit status

We can find the location of the library with4:

$ gfortran -print-file-name=libgfortran.so

/usr/lib/gcc/x86_64-redhat-linux/4.8.5/libgfortran.so

Then export LDFLAGS with the above information, without the file name:

$ export LDFLAGS=-L/usr/lib/gcc/x86_64-redhat-linu

x/4.8.5

STILL DOES NOT WORK ???????????????????????????????????

The specific requirements for libraries do not work in the same way for

gfortran and binaries will have a different size if compiled with the

necessary switch:

$ gfortran hello77.f -o hello77_gfortran

$ gfortran hello77.f -static-libgfortran -o hello77_static_gfortran

We can see that the sizes are different:

$ ls -l *gfortran | cut -c34-110

 7970 Jun 2 13:17 hello77_gfortran

 158309 Jun 2 13:17 hello77_static_gfortran

4 https://github.com/JuliaLang/julia/issues/6150

 Compiling

 39

A test on the BCC Linux cluster has shown that the gfortran compiled

binaries in this simple form do not require any library specifications unlike the

files compiled with f77 or g77.

Therefore, which compiler is used makes a difference. However, some

program code might be sensitive to the nature of the compiler so this might not

be a universal result.

3. Compiling
Compiling other programs in various languages will require some knowledge

on compilation methods and verifying that the appropriate compiler or

compilers are installed.

The command “which” can be useful to locate where program are installed if

they are present.

Compilers installed on BCC Linux include: gcc, gcc34, cc, c89, c99, c++, g++,

g++34, g77, f77, f95, gfortran.

C pre-processors installed: cpp and mcpp

4. Standard Universe
The Standard Universe offers advantages to the Vanilla Universe especially for

long running computations that may create incremental output files.

However, the software has to be recompiled with the condor_compile

command.

Access to the original source or object code is required for this step. If not, this

is not possible and the Standard Universe cannot be used.

Read more on the HTCondor manual.5

5. Compiling R
Since there are no common directories for software each user has to compile

their own. Once compiled the software should be moved within the

/scratch directory or a subdirectory within.

5 http://research.cs.wisc.edu/htcondor/manual/v8.6/2_4Running_Job.html

Library dependencies

40

5.1. Download R

The repository for R is “The Comprehensive R Archive Network” or CRAN
https://cran.r-project.org/

There are multiple options for Linux, but for redhat there is only a README

file. For us we need to download the source code, which we can get from:

https://cran.r-project.org/src/base/R-3/

For example, download R-3.2.5.tar.gz

5.2. Install

Most open-source software has a README and an INSTALL file in plain text

with information.

Note: the CHTC help pages suggest to use an interactive HTCondor session.

However, our cluster is NOT configured for this option. Therefore, compilation

has to occur on the “submit” node.

Notes:

- there is no X11 on the cluster, therefore care has to be given to not use X11

during compilation, this is accomplished with --with-x=no

- To avoid library sharing --enable-R-shlib was removed from the

default command.

Uncompress:

tar zxvf R-3.2.5.tar.gz

Then change into the new directory (cd), configure and compile (make):

Here is an example to compile R version 3.2.5:

cd R-3.2.5

Compile R 3.2.5 on 12/12/2016 in /scratch/jsgro/R/

./configure --prefix=$(pwd) --with-readline=no --with-x=no

make

The R and Rscript executables are located in the ./bin directory.

To start R interactively from the R-3.2.5 directory type:

 Compiling R

 41

./bin/R

5.2.1. Note: Problem with Zlib in newer version

Starting with version R-3.3.0 there is a newer requirement for zlib which

does not seem to be installed on BCC. Therefore, it may be necessary to

compile zlib first for these versions.

See for example:

- http://pj.freefaculty.org/blog/?p=315

- https://stat.ethz.ch/pipermail/r-devel/2015-

April/070951.html

The first link provides an example to compile zlib.

The second link provides an example to configure differently.

5.3. R additional packages

To use R on the cluster additional packages should be added first from e.g

CRAN or Bioconductor and the compiled R directory compressed and

transferred e.g. with tar.

tar -czvf R.tar.gz R-3.2.5/

The added packages will be added in the directory echoed by the R command
.Library

 In the case of this example, start R (e.g. ./bin/R) , then within the R

console:

> .Library

[1] "/scratch/jsgro/R/R-3.2.5/library"

The compressed tar file should then be part of the files transferred and unarchived by a

command contained within the executable (*.sh) file for the job.

It should be sorted out how to transfer the compressed file(s) onto the compute node,

uncompress and unarchive them and how to access them.

See for example the section on LD_LIBRARY_PATH above (on page 35) to implement

this.

 42

Interactive Jobs

Interactive jobs are now possible on BCC. The default Universe will be

Vanilla.

From the manual6:

An interactive job is a Condor job that is provisioned and
scheduled like any other vanilla universe Condor job onto an
execute machine within the pool. The result of a running
interactive job is a shell prompt issued on the execute machine
where the job runs. The user that submitted the interactive job
may then use the shell as desired, perhaps to interactively run an
instance of what is to become a Condor job.

This option may be beneficial for example to compile software (see previous

section) without impeding the submit node.

6. Interactive shell
The simplest command to start an interactive job is:

$ condor_submit -interactive

Submitting job(s).

1 job(s) submitted to cluster 1108.

Waiting for job to start...

There may be a delay for the interactive shell to begin depending on the cluster

availability.

The interactive shell will be running as an HTCondor job on a compute node

6 http://research.cs.wisc.edu/htcondor/manual/v8.6/2_5Submitting_Job.html (see section 2.5.13)

 Interactive shell

 43

rather than the submit node.

Once activated a splash screen of information will be presented. An error about

“home directory” not found is normal as HTCondor nodes are only aware of

the /scratch directory as explained previously.

Note that the shell will log itself out after 7200 seconds (2hrs) of inactivity:

Could not chdir to home directory /home/jsgro@ad.wisc.edu: No

such file or directory

Welcome to slot1_4@cluster-0005.biochem.wisc.edu!

You will be logged out after 7200 seconds of inactivity.

cluster-0005.biochem.wisc.edu

Welcome to centos-release-7-4.1708.el7.centos.x86_64 running

kernel (3.10.0-693.17.1.el7.x86_64).

System information as of: Tue May 1 15:39:05 CDT 2018

System Load: 39.06, 39.07, 39.06 System Uptime:

 69 days 6 hours 30 min 57 sec

Memory Usage: 0.0% Swap Usage: 0.9%

Usage On /: 158G Access Rights on /: (rw

Local Users: 0 Whoami: myname

Processes: 543

Interface MAC Address IP Address

enp3s0f0 xx:xx:xx:xx:xx:xx 128.xxx.xxx.xxx/22

bash-4.2$

We now have an interactive bash shell.

bash-4.2$ pwd

/var/lib/condor/execute/dir_36940

bash-4.2$ printenv | fgrep -v LS_COLORS

_CONDOR_JOB_PIDS=

HOSTNAME=cluster-0005.biochem.wisc.edu

TERM=xterm-256color

SHELL=/bin/bash

HISTSIZE=1000

SSH_CLIENT=128.104.119.165 22309 9618

TMPDIR=/var/lib/condor/execute/dir_36940

_CONDOR_ANCESTOR_28163=36940:1525207142:4203470193

_CONDOR_SCRATCH_DIR=/var/lib/condor/execute/dir_36940

SSH_TTY=/dev/pts/0

USER=jsgro

_CHIRP_DELAYED_UPDATE_PREFIX=Chirp

LD_LIBRARY_PATH=/usr/local/cuda/lib64:

TEMP=/var/lib/condor/execute/dir_36940

BATCH_SYSTEM=HTCondor

_CONDOR_CHIRP_CONFIG=/var/lib/condor/execute/dir_36940/.chirp.config

TMOUT=7200

MAIL=/var/spool/mail/jsgro

Interactive Jobs

44

PATH=/usr/local/bin:/usr/bin:/bin:/usr/bin:/usr/local/sbin

:/usr/sbin:/usr/local/cuda/bin

_CONDOR_ANCESTOR_3044=28163:1521057660:334989916

PWD=/var/lib/condor/execute/dir_36940

CUDA_VISIBLE_DEVICES=10000

_CONDOR_AssignedGPUs=10000

LANG=en_US.UTF-8

_CONDOR_ANCESTOR_36940=36949:1525207145:1006659451

_CONDOR_SLOT=slot1_4

HISTCONTROL=ignoredups

SHLVL=1

HOME=/home/jsgro@ad.wisc.edu

_CONDOR_MACHINE_AD=/var/lib/condor/execute/dir_36940/.machine.ad

LOGNAME=jsgro

SSH_CONNECTION=128.104.119.165 22309 128.104.119.172 9618

GPU_DEVICE_ORDINAL=10000

LESSOPEN=||/usr/bin/lesspipe.sh %s

OMP_NUM_THREADS=1

_CONDOR_JOB_AD=/var/lib/condor/execute/dir_36940/.job.ad

_CONDOR_JOB_IWD=/var/lib/condor/execute/dir_36940

_CONDOR_SHELL=/bin/bash

_CONDOR_SLOT_NAME=slot1_4@cluster-0005.biochem.wisc.edu

_=/usr/bin/printenv

It is important to note that the environment variables are transferred from the

user, including the $HOME directory even if HTCondor cannot access it!

Most importantly the /scratch directory is available:

bash-4.2$ cd /scratch

From this point it will be possible to work to prepare software and files without

impacting the submit node.

When done, the shell can be released with the exit command:

bash-4.2$ exit

logout

Connection to condor-job.cluster-0005.biochem.wisc.edu

closed.

 45

File transfer from
 research.drive.wisc.edu

1. Moving files on and off the cluster:
Note: older “fs.biochem.wisc.edu”, fs2 and similar servers are defunct.

The current file server is smb://research.drive.wisc.edu that can

be mounted on a Mac or PC as a network drive. Therefore files stored on these

computers will be available within the cluster.

HTcondor does not see these directories, therefore files of interest have to be

either moved onto /scratch or transferred via the .sub command file.

2. Useful commands
The cp or mv commands can be used to copy or move files.

Adding -r can help to transfer complete directories and their content.

Alternatively, archiving commands can also prove useful such as:

- zip and unzip

- gzip and gunzip

tar

	1. Text-based access
	2. No graphical interface (X11)
	3. VPN access
	4. Login info
	5. Login Splash Screen
	6. Linux OS: CentOS
	7. Overview
	8. Connecting to the cluster
	9. Disk space, home directory, /scratch
	10. File servers
	11. Process
	12. Getting ready
	13. HTCondor file transfers
	14. Beyond local cluster: Flocking
	1. This section assumes that:
	2. Connect and set-up a working space
	3. Create a simple executable test file
	4. Create a simple submit file
	5. Submit the job
	6. Check output
	7. Syntax
	8. HTCondor version
	9. Conclusion
	On-line resources:
	1. Class Ads
	2. Universes
	3. Steps before running a job
	4. Requirements and Rank
	5. File transfer
	5.1. Jobs with Shared File System
	5.2. File Transfer Mechanism
	5.3. File Paths for file transfer

	6. Managing jobs
	7. Job completion
	8. Tag file names with job or process
	9. Example: environment variables
	10. Transfer of environment: getenv
	1. FORTRAN 77: Hello World example
	2. FORTRAN 95: gfortran
	2.1. Static linking

	3. Compiling
	4. Standard Universe
	5. Compiling R
	5.1. Download R
	5.2. Install
	5.2.1. Note: Problem with Zlib in newer version

	5.3. R additional packages

	6. Interactive shell
	1. Moving files on and off the cluster:
	2. Useful commands

