
GEO Database: GSE46268 vitamin D
Jean-Yves Sgro
May 9, 2017

Contents
1 Introduction 2

2 Prerequisites 2
2.1 CRAN packages . 2
2.2 Bioconductor modules . 2

3 knitr 2
3.1 Create a new project . 2
3.2 R Markdown script file . 3
3.3 Caching . 3

4 The GEO database 4

5 Explore the GEO page 4

6 Analysis based on GEO2R script 5
6.1 Load the Bioconductor libraries: . 5
6.2 Command getGEO() and R lists . 5
6.3 Load the dataset . 5
6.4 Explore the new dataset structure . 7
6.5 Samples: “phenotypic” data . 7
6.6 Sample labels . 8
6.7 Making groups . 8
6.8 Log transform . 9
6.9 Proceed with analysis . 10
6.10 Update annotations . 12
6.11 Write output results table into a file . 13

7 Box plots 13
7.1 The complete GEO2R code: . 13
7.2 Continuation . 14

8 GEO2R ends 15

9 Adding to GEO2R results 16
9.1 Simple clustering . 16
9.2 Principal Component Analysis . 17
9.3 Heatmaps . 21
9.4 MA Plot . 26

10 Online practical exercises for microarray data analysis 28

11 Session info 29

References 29

1

1 Introduction

This exercise is meant to try knitr (Xie 2016, Xie (2015), Xie (2014)) with a published dataset (Wheelwright
et al. 2014) on the GEO database (Barrett et al. 2013).

The title of the dataset is:

Gene expression profile of human monocytes stimulated with all-trans retinoic acid (ATRA)
or 1,25a-dihydroxyvitamin D3 (1,25D3)

and is available at the GEO web site at http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE46268

Data was in the published paper (Wheelwright et al. 2014):

Wheelwright M, Kim EW, Inkeles MS, De Leon A et al. All-trans retinoic acid-triggered
antimicrobial activity against Mycobacterium tuberculosis is dependent on NPC2. J Immunol
2014 Mar 1;192(5):2280-90. PMID: 24501203

2 Prerequisites

2.1 CRAN packages

The following R packages are used: knitr and other CRAN packages will be installed if necessary. Make sure
that the “Install Dependencies” button is checked. You can also use line commands such as:
install.packages("knitr", repos="http://cran.us.r-project.org")
install.packages("rmarkdown", repos="http://cran.us.r-project.org")

2.2 Bioconductor modules

The following BioConductor modules are necessary. To install them run the following code manually if
necessary:
source("http://bioconductor.org/biocLite.R")
biocLite("GEOquery")
biocLite("limma")
biocLite("Biobase")
biocLite("affy")

3 knitr

3.1 Create a new project

An RStudio project is a set-up that uses a specific directory to contain the data that we want to use for
analysis.

To set-up a new project follow do the following in RStudio:

1. Click the File menu button, then New Project.
2. Click New Directory.
3. Click Empty Project.
4. Type in the name of the directory to store your project, e.g. VitaminD.
5. For now don’t check “Create a git repository” (should be unselected by default)

2

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE46268
http://www.ncbi.nlm.nih.gov/pubmed/24501203

6. Click the Create Project button.

The project will be saved in the default directory: /Users/YourName on the Mac unless you navigate to
e.g. the Desktop to more easily find the it later.

3.2 R Markdown script file

You can start a new R Markdown file with the following menu cascade:

File > New File > R Markdown. . .

Within the file there will be some examples data.

Remove everything but keep the “header” that is held between 2 lines with dashes --- as they serve for the
final output.

3.2.1 R Markdown

For this exercise you can use very simple R Markdown for separating paragraphs with the # sign, for example:

Heading 1
Heading 2
Heading 3

The rest of the text can be simply plain text.

If you need to review R Markdown syntax you can do so from one of the previous exercises Us-
ing_RStudio_II.html (short URL: http://bit.ly/21tdUYv ; or check the complete notes from that session at
http://bit.ly/1TDrmJB)

For inserting R code use the green button with the white C and an orange arrow. Or you can write the
necessary tick marks by hand. The code “chunk” can have a unique optional name label:

“‘{r optional_name_label }
This code block starts with 3 backticks and will end the same way.
Place the R code within these boundaries.
“‘

3.3 Caching

Using knitr for the exercise allows to use the “cache” method which is best used with large data. For these
microarray data it saves a minute or two, but for larger datasets it can be a substential time saver.

Here we’ll set the cache globally so we don’t have to repeat the caching request for each code chunk.

To engage the caching add the following code within your .Rmd project file, preferably at the top below the
header:

“‘{r global_options_settings, include=TRUE, echo=FALSE }
Global options:
opts_chunk$set(warning=FALSE, message=FALSE, comment=“”, cache=TRUE)
“‘

These global settings make the following changes:

• warning=FALSE and message=FALSE suppress in the final output any warnings or messages that usually
appear in red on the regular R console. These can take a lot of space, be unsightly and are not necessary
in the final report.

3

https://dl.dropboxusercontent.com/u/26372912/ipython/RStudio_01/Using_RStudio_II.html
https://dl.dropboxusercontent.com/u/26372912/ipython/RStudio_01/Using_RStudio_II.html
http://bit.ly/21tdUYv
http://bit.ly/1TDrmJB

• comment="" removes the ## mark after all output. If you liked that feature, then you can omit this
setting.

• cache=TRUE is the one that is of interest for large datasets. . . As you work on your project, if a file, a
plot or a dataframe does not need to be changed when you make changes to your file, then the cached
data will be used and can save a lot of time.

• Within the {r} bracket global_options_settings is an optional name for this code “chunk”.

• include=TRUE means that we want the code to be included/activated.

• echo=FALSE means that we don’t want anything related to this code to appear within the final report.

There are more caching options or methods detailed at http://yihui.name/knitr/demo/cache/

4 The GEO database

The Gene Expression Omnibus (GEO) is a public repository that archives and freely distributes
microarray, next-generation sequencing, and other forms of high-throughput functional genomic
data submitted by the scientific community.

Further information about the database can be found at http://www.ncbi.nlm.nih.gov/geo/info/

A general overview of the database can be found at http://www.ncbi.nlm.nih.gov/geo/info/

The data is available in various forms and formats. In summary the various names for data files are summarized
in the fillowing table (from http://bit.ly/1LCJOj9 ; Aug 11, 2015 archive: bit.ly/1p2N65D)

Data type Description
GEO Platform (GPL) These files describe a particular type of microarray. They are

annotation files.
GEO Sample (GSM) Files that contain all the data from the use of a single chip.

For each gene there will be multiple scores including the main
one, held in the VALUE column.

GEO Series (GSE) Lists of GSM files that together form a single experiment.
GEO Dataset (GDS) These are curated files that hold a summarized combination of

a GSE file and its GSM files. They contain normalized
expression levels for each gene from each sample (i.e. just the
VALUE field from the GSM file).

Today we’ll use an experiment on vitamin D stored in a GSE file containing multiple samples. Within the
database, each of the samples also has an individual GSM entry.

5 Explore the GEO page

1. Go to the dataset link GSE46268
2. Scroll down the page and click the [+]More at the Samples(12) entry
3. Note the name of the samples and their treatments. We’ll find this information again later
4. Note the link named Analyse with GEO2R. The R code for this exercise is derived from this

option. Check the “R Script” tab to see the code on the GEO web page.
5. You can read information about this service on the About GEO2R page
6. You can also watch the 4 minutes YouTube video titled GEO2R: Analyze GEO Data on that same

page.

4

http://yihui.name/knitr/demo/cache/
http://www.ncbi.nlm.nih.gov/geo/info/
http://www.ncbi.nlm.nih.gov/geo/info/
http://bit.ly/1LCJOj9
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE46268
http://www.ncbi.nlm.nih.gov/geo/geo2r/?acc=GSE46268
http://www.ncbi.nlm.nih.gov/geo/info/geo2r.html
http://youtu.be/EUPmGWS8ik0

6 Analysis based on GEO2R script

Caveat: this exercise is meant to explore how the GEO database system of GEO2R conducts
the computation. The authors of the paper have used other software to draw conclusions on
signigicant genes and there is no attempt at this level to reproduce the results of the paper.

6.1 Load the Bioconductor libraries:

library(GEOquery)
library(Biobase)
library(limma)
library(affy)

6.2 Command getGEO() and R lists

The command getGEO() is a function from the packages GEOquery (S. Davis and Meltzer 2007) that can
download data directly from the GEO database http://www.ncbi.nlm.nih.gov/geo/ .

The help command ?getGEO provides a description that stating that It directs the download (if no filename
is specified) and parsing of a GEO SOFT format file into an R data structure[..]

However, the default command as specified in the Usage section is:

getGEO(GEO = NULL, filename = NULL, destdir = tempdir(), GSElimits=NULL,
GSEMatrix=TRUE,AnnotGPL=FALSE,getGPL=TRUE)

The GSEMatrix=TRUE option is therefore the default and will open the Matrix format and NOT the SOFT
format as implied by the definition. The result will be a different type of R object data structure.

The data exist in various file formats on the GEO database.

Format name Format
SOFT Simple Omnibus Format in Text.
MINiML (MIAME Notation in Markup Language - XML format
Matrix spreadsheet containing the final, normalized values that are comparable across

rows and Samples

The SOFT format contains both data and annotations and therefore the files are larger. The Matrix format
is similar but without the annotation.

6.3 Load the dataset

gset <- getGEO("GSE46268", GSEMatrix =TRUE)

While the format is deemed a “matrix” the gset object created is in fact a list that contains one set of
experiment and is therefore a list with one element!

We can see that with this code:
class(gset)

[1] "list"

5

http://www.ncbi.nlm.nih.gov/geo/

length(gset)

[1] 1
names(gset)

[1] "GSE46268_series_matrix.txt.gz"

Note that the name could have been obtained with the attributes attr() function calling on the list item
"names".
attr(gset,"names")

We therefore conclude that for now gset is a list with one element that was derived from file
GSE46268_series_matrix.txt.gz.

This result will help explain how the code continues and to better understand that let’s make a quick a parte
into R lists.

Let’s create a list L containing 2 objects, for example a vector of numbers vn and a vector of characters vc:
Create list L
L <- list(vn=c(2,3,5), vc=c("sun", "moons"))
Print list L
L

$vn
[1] 2 3 5

$vc
[1] "sun" "moons"
Print first item and class of list L
L[1]

$vn
[1] 2 3 5
class(L[1])

[1] "list"
Print content of first item of list L and class
L[[1]]

[1] 2 3 5
class(L[[1]])

[1] "numeric"

In a similar way, the code continues by checking the length of the gset object which is still a list. This
conditional statement checks if the length of the list is greater than 1 and saves the result in “index” variable
idx and checks for the pattern GPL570 which is the name in GEO for the type of microarray that was used
in the experiment.

The gset object is then overwritten with the experimental data contained within the 1rst object of the list
(or more if more than 1 have been detected) :
if (length(gset) > 1) idx <- grep("GPL570", attr(gset, "names")) else idx <- 1
gset <- gset[[idx]]

We can now check again the class and length of gset since this has changed it:

6

class(gset)

[1] "ExpressionSet"
attr(,"package")
[1] "Biobase"
length(gset)

[1] 1
slotNames(gset)

[1] "experimentData" "assayData" "phenoData"
[4] "featureData" "annotation" "protocolData"
[7] ".__classVersion__"

The data structure ExpressionSet is a kind of data frame that contains the complete information about
the experiment. The names() command not longer applies as gset is no longer a list but the command
slotNames() applies to dataframe and can be used.

6.4 Explore the new dataset structure

6.4.1 Dataset dimensions:

dim(gset)

Features Samples
54675 12

Features are the number of “genes” on the array and we see that there are 54675. We can also see that there
are 12 samples.

6.4.2 Dataset structure

Try the following command to get hints from the data structure
str(gset)

6.5 Samples: “phenotypic” data

“phenotypic” data is the list of samples with their associated attributes and their treatment

The following command will list all attributes:
pData(phenoData(gset))

We can get the dimensions of the data table with the command:
dim(pData(phenoData(gset)))

[1] 12 38

That will tell us that there are 12 rows, corresponding to the number of samples, and there are 38 columns
in the table.

We can list the name of the columns in the table with the command:

7

colnames(pData(phenoData(gset)))

And we’ll print only the first 6: We can list the name of the columns in the table with the command:
colnames(pData(phenoData(gset)))[1:6]

[1] "title" "geo_accession" "status"
[4] "submission_date" "last_update_date" "type"

Here is a modified command showing only two columns from the attributes table that seem to be most
informative:
pData(phenoData(gset))[, c(12,13)]

characteristics_ch1.2 characteristics_ch1.3
GSM1127890 individual: donor 1 treatment: control
GSM1127891 individual: donor 2 treatment: control
GSM1127892 individual: donor 3 treatment: control
GSM1127893 individual: donor 4 treatment: control
GSM1127894 individual: donor 1 treatment: all-trans retinoic acid
GSM1127895 individual: donor 2 treatment: all-trans retinoic acid
GSM1127896 individual: donor 3 treatment: all-trans retinoic acid
GSM1127897 individual: donor 4 treatment: all-trans retinoic acid
GSM1127898 individual: donor 1 treatment: 1,25a-dihydroxyvitamin D3
GSM1127899 individual: donor 2 treatment: 1,25a-dihydroxyvitamin D3
GSM1127900 individual: donor 3 treatment: 1,25a-dihydroxyvitamin D3
GSM1127901 individual: donor 4 treatment: 1,25a-dihydroxyvitamin D3

6.6 Sample labels

make proper column names to match toptable
fvarLabels(gset) <- make.names(fvarLabels(gset))

The function make.names() is from the base pakcage and its descrition is to make syntactically valid names
out of character vectors.

6.7 Making groups

Below is code to help extract the name of treatment. This is not part of the original GEO2R code.
NOTE:
The following code is added to the GEO2R code to automatically extract
the name of the treatments from column 13 of the phenoData
tr <- levels(unique(pData(phenoData(gset))[13])[,1])
tr1 <- gsub("treatment: ", "", tr[1])
tr2 <- gsub("treatment: ", "", tr[2])
tr3 <- gsub("treatment: ", "", tr[3])
The variables tr1, tr2 and tr3 are used wihthin
the knitr text file to name the treatments in the
paragraph below

The names of treatments are within the 13th column of the phenoData information and are saved within
object tr. The text “treatment:” is removed by gobal substitution (command gsub) to an empty string
("") leaving the treatment name available.

8

Note:In the text below this table, the .RMD file used to create this document used this string to write the
name of the treatment without any need for manual copy/paste.

Object name Extracted named treatment
tr treatment: 1,25a-dihydroxyvitamin D3, treatment: all-trans retinoic acid,

treatment: control
tr1 1,25a-dihydroxyvitamin D3
tr2 all-trans retinoic acid
tr3 control

Groups were created using the GEO2R web interface which resulted in the following vectors to be created to
distinguished three groups labeled G0, G1 and G2 which, based on the phenotypic data we explored above would
correspond to treatments named 1,25a-dihydroxyvitamin D3 , all-trans retinoic acid, and control.
group names for all samples
sml <- c("G0","G0","G0","G0","G1","G1","G1","G1","G2","G2","G2","G2");

This means that the software has idendified 3 groups of 4 that make up our samples! It is not surprising as
this set-up had to be done by hand within the web interface.

6.8 Log transform

This is an important step for better statistical evaluation of microarray data.

First the observed expression values are extracted by the function exprs() from the Biobase package and
stored into object ex taking care of removing NA values (na.rm=T). Negative values (for which a log cannot
be calculated) are replaced with NaN and at the end the original expression values are replaced by their log:
exprs(gset) <- log2(ex).
log2 transform
ex <- exprs(gset)
qx <- as.numeric(quantile(ex, c(0., 0.25, 0.5, 0.75, 0.99, 1.0), na.rm=T))
LogC <- (qx[5] > 100) ||

(qx[6]-qx[1] > 50 && qx[2] > 0) ||
(qx[2] > 0 && qx[2] < 1 && qx[4] > 1 && qx[4] < 2)

if (LogC) { ex[which(ex <= 0)] <- NaN
exprs(gset) <- log2(ex) }

There is some internal calculation on quantiles, and the replacement of negative or zero values (ex <= 0) by
NaN before taking the log2 of the intensities.

The final result is an “expression set” which contains the log2 transform of the intensity values.

The log transformation is a necessary step to change the data into a form to which statistics can be better
applied: it gives the data a more “Normal” distribution as can be seen by a histogram.

We can compare a histogram of values before and after log2 transformation:
Split graphics in 2 sections
par(mfrow=c(1,2))
Before log2 - since it's already been log2 trasnform
we use 2^ to compute back the original value:
hist(2^exprs(gset), breaks=25)
#After log2
hist(exprs(gset), breaks=25)

9

Histogram of 2^exprs(gset)

2^exprs(gset)

F
re

qu
en

cy

0 20000 40000

0e
+

00
2e

+
05

4e
+

05
6e

+
05

Histogram of exprs(gset)

exprs(gset)

F
re

qu
en

cy

−5 0 5 10 15

0e
+

00
4e

+
04

8e
+

04

Return graphics to default
par(mfrow=c(1,1))

6.9 Proceed with analysis

Set up the data and proceed with analysis

This uses a method from the limma package (Ritchie et al. 2015).

The following code “chunk” prepares an experimental design matrix where samples on rows are represented
within a matrix by either 1 or 0 and columns are the names of the sample groups G0, G1 and G2 obtained
with the as.factor() and levels() functions.

The makeContrasts() function creates pair-wise comparison between groups.

The limma package then uses Baysian statistical methods (eBayes()) to fit the data to the model.

The data is adjusted for False Discovery Rate (adjust="fdr") and sorted by column B which represents the
log-odds that the gene is differentially expressed.

Finally, the top 250 “genes” are extracted into a table object tT (the default export number is 10, see
?topTable.)

FDR: False Discovery Rate1 The False discovery rate (FDR) is one way of conceptualizing
1https://en.wikipedia.org/wiki/False_discovery_rate

10

https://en.wikipedia.org/wiki/False_discovery_rate

the rate of type I errors in null hypothesis testing when conducting multiple comparisons. FDR-
controlling procedures are designed to control the expected proportion of rejected null hypotheses
that were incorrect rejections (“false discoveries”).(Benjamini and Hochberg 1995)

set up the data and proceed with analysis
fl <- as.factor(sml)
gset$description <- fl
design <- model.matrix(~ description + 0, gset)
colnames(design) <- levels(fl)
fit <- lmFit(gset, design)
cont.matrix <- makeContrasts(G2-G0, G1-G0, G2-G1, levels=design)
fit2 <- contrasts.fit(fit, cont.matrix)
fit2 <- eBayes(fit2, 0.01)
tT <- topTable(fit2, adjust="fdr", sort.by="B", number=250)

Side exercise: check content of objects from code above
- sml
- fl
- design before and after colnames() change
- cont.matrix

The best 250 are kept in the final table. This number is arbitrary, and if left unspecified would provide a
table with all results.

We can count the number of columns of the Table:
dim(tT)

[1] 250 23

We can see the name of the columns:
colnames(tT)

[1] "ID" "GB_ACC"
[3] "SPOT_ID" "Species.Scientific.Name"
[5] "Annotation.Date" "Sequence.Type"
[7] "Sequence.Source" "Target.Description"
[9] "Representative.Public.ID" "Gene.Title"

[11] "Gene.Symbol" "ENTREZ_GENE_ID"
[13] "RefSeq.Transcript.ID" "Gene.Ontology.Biological.Process"
[15] "Gene.Ontology.Cellular.Component" "Gene.Ontology.Molecular.Function"
[17] "G2...G0" "G1...G0"
[19] "G2...G1" "AveExpr"
[21] "F" "P.Value"
[23] "adj.P.Val"

We can view the first 5 witin a table with the command:
View(tT[1:5,])

We can also view the first top 3 and specify only a few of the most interesting columns (for printing space
sake.)
Note the name of the column headers.
head(tT)[1:3,c(2,11:12,17:20, 22:23)]

GB_ACC Gene.Symbol ENTREZ_GENE_ID G2...G0 G1...G0
226099_at AI924426 ELL2 22936 2.7737814 -0.04501778
206504_at NM_000782 CYP24A1 1591 9.4846618 -0.88549603

11

212685_s_at AI608789 TBL2 26608 0.4468399 3.36551801
G2...G1 AveExpr P.Value adj.P.Val

226099_at 2.818799 11.341555 6.384254e-10 1.722549e-05
206504_at 10.370158 7.853788 6.519834e-10 1.722549e-05
212685_s_at -2.918678 11.480685 9.451573e-10 1.722549e-05

6.10 Update annotations

The annotations are the default options and can be updated with the latest NCBI annotations.

Each microarray has a “platform” ID code specific to that array. Here we find the code for the array with
annotation(gset) which gives the result GPL570 and this is passed onto the next command to download
the corresponsing “platform” file from NCBI/GEO and stored within platf.

The operations that follow check the name of “column” information in tT and gset and “merge” into a final
version based on the common column ID.
load NCBI platform annotation
gpl <- annotation(gset)
platf <- getGEO(gpl, AnnotGPL=TRUE)
ncbifd <- data.frame(attr(dataTable(platf), "table"))

replace original platform annotation
tT <- tT[setdiff(colnames(tT), setdiff(fvarLabels(gset), "ID"))]
tT <- merge(tT, ncbifd, by="ID")
tT <- tT[order(tT$P.Value),] # restore correct order

Side exercise:
- check the output of commands colnames(tT) and fvarLabels(gset)
- check the meaning of setdiff. (Hint: in package BiocGenerics)

With the updated annotations the number of columns has changed:
dim(tT)

[1] 250 28

THe new annotation has completly rearranged and changed many of the columns, including the addtion of
Gene Ontology.
We can see the name of the columns
colnames(tT)

[1] "ID" "G2...G0"
[3] "G1...G0" "G2...G1"
[5] "AveExpr" "F"
[7] "P.Value" "adj.P.Val"
[9] "Gene.title" "Gene.symbol"

[11] "Gene.ID" "UniGene.title"
[13] "UniGene.symbol" "UniGene.ID"
[15] "Nucleotide.Title" "GI"
[17] "GenBank.Accession" "Platform_CLONEID"
[19] "Platform_ORF" "Platform_SPOTID"
[21] "Chromosome.location" "Chromosome.annotation"
[23] "GO.Function" "GO.Process"
[25] "GO.Component" "GO.Function.ID"
[27] "GO.Process.ID" "GO.Component.ID"

12

The statistical columns are now at the begining of the table.

We can print the first 3 with some specific columns. Note that the row names are changed to a number,
probably a ranking number.
head(tT)[1:3,c(1:10)]

ID G2...G0 G1...G0 G2...G1 AveExpr F
202 226099_at 2.7737814 -0.04501778 2.818799 11.341555 256.8290
84 206504_at 9.4846618 -0.88549603 10.370158 7.853788 255.8234
122 212685_s_at 0.4468399 3.36551801 -2.918678 11.480685 238.6761

P.Value adj.P.Val
202 6.384254e-10 1.722549e-05
84 6.519834e-10 1.722549e-05
122 9.451573e-10 1.722549e-05

Gene.title Gene.symbol
202 elongation factor for RNA polymerase II 2 ELL2
84 cytochrome P450 family 24 subfamily A member 1 CYP24A1
122 transducin (beta)-like 2 TBL2

The file would be written in the current directory.

The table can be made nicer with kable()

kable() is aknitr function to render tables.
kable(head(tT)[1:3,c(1:10)])

ID G2. . . G0 G1. . . G0 G2. . . G1 AveExpr F P.Value adj.P.Val Gene.title Gene.symbol
202 226099_at 2.7737814 -0.0450178 2.818799 11.341555 256.8290 0 1.72e-05 elongation factor for RNA polymerase II 2 ELL2
84 206504_at 9.4846618 -0.8854960 10.370158 7.853788 255.8234 0 1.72e-05 cytochrome P450 family 24 subfamily A member 1 CYP24A1
122 212685_s_at 0.4468399 3.3655180 -2.918678 11.480685 238.6761 0 1.72e-05 transducin (beta)-like 2 TBL2

6.11 Write output results table into a file

The code provided write.table(tT, file=stdout(), row.names=F, sep="\t") would print the 250 re-
sults onto the console as the given file name is stdout(). To write the complete list we would have to update
the number= to that of the number of “genes” and provide a proper filename such as "results.txt" printed
with quotes.

7 Box plots

The next portion of the code is meant to create box plots. The code is redundant by downloading again,
creating groups again etc. but that makes that chunk of code independent from the rest.
Some slight difference can be noted for the ex object created here with a specification as to the ordering of
the samples, so that samples are presented together by group.

7.1 The complete GEO2R code:

##
Boxplot for selected GEO samples
library(Biobase)

13

library(GEOquery)

load series and platform data from GEO

gset <- getGEO("GSE46268", GSEMatrix =TRUE)
if (length(gset) > 1) idx <- grep("GPL570", attr(gset, "names")) else idx <- 1
gset <- gset[[idx]]

group names for all samples in a series
sml <- c("G0","G0","G0","G0","G1","G1","G1","G1","G2","G2","G2","G2")

order samples by group
ex <- exprs(gset)[, order(sml)]
sml <- sml[order(sml)]
fl <- as.factor(sml)
labels <- c("control","retinoic","D3")

set parameters and draw the plot
palette(c("#dfeaf4","#f4dfdf","#f2cb98", "#AABBCC"))
dev.new(width=4+dim(gset)[[2]]/5, height=6)
par(mar=c(2+round(max(nchar(sampleNames(gset)))/2),4,2,1))
title <- paste ("GSE46268", '/', annotation(gset), " selected samples", sep ='')
boxplot(ex, boxwex=0.6, notch=T, main=title, outline=FALSE, las=2, col=fl)
legend("topleft", labels, fill=palette(), bty="n")

7.2 Continuation

We can start where the first change occurs: with the updating of the ex object:
##
Boxplot for selected GEO samples
(removed chunk)

order samples by group
ex <- exprs(gset)[, order(sml)]
sml <- sml[order(sml)]
fl <- as.factor(sml)
labels <- c("control","retinoic","D3")

set parameters and draw the plot
palette(c("#dfeaf4","#f4dfdf","#f2cb98", "#AABBCC"))
dev.new(width=4+dim(gset)[[2]]/5, height=6)
par(mar=c(2+round(max(nchar(sampleNames(gset)))/2),4,2,1))
title <- paste ("GSE46268", '/', annotation(gset), " selected samples", sep ='')
boxplot(ex, boxwex=0.6, notch=T, main=title, outline=FALSE, las=2, col=fl)
legend("topleft", labels, fill=palette(), bty="n")

14

G
S

M
11

27
89

0

G
S

M
11

27
89

1

G
S

M
11

27
89

2

G
S

M
11

27
89

3

G
S

M
11

27
89

4

G
S

M
11

27
89

5

G
S

M
11

27
89

6

G
S

M
11

27
89

7

G
S

M
11

27
89

8

G
S

M
11

27
89

9

G
S

M
11

27
90

0

G
S

M
11

27
90

1

0

5

10

15

GSE46268/GPL570 selected samples

control
retinoic
D3

The dev.new() options shows the plot in a new window on R or RStudio when running interactively but
does not include it within an RMarkdown report.

The solution is to simply comment out (#) the dev.new() line so that the final plot is included in the final
report.

Within the plot() command the option las=2 write the names of the samples as vertical labels on the x axis.

One important feature to look at in box-plots is the horizontal mark within the boxes that represents the
median value. The box itself is made of the data from the 25th to the 75th percentile. If the values are
similar than it is possible to use the data to compare the samples against each other.

Learn more about box plots at https://en.wikipedia.org/wiki/Box_plot

8 GEO2R ends

The GEO2R R scripts only contains the code that we have explored. On the interactive web site, there are
other possibilities, for example to show the expression values of specific genes across all samples.

Details of the GEO2R method can be found on the GEO web site at http://www.ncbi.nlm.nih.gov/geo/info/
geo2r.html

15

https://en.wikipedia.org/wiki/Box_plot
http://www.ncbi.nlm.nih.gov/geo/info/geo2r.html
http://www.ncbi.nlm.nih.gov/geo/info/geo2r.html

9 Adding to GEO2R results

There are many other calculations or plots that can be added to the GEO2R analysis. Here are a few
examples.

We may use some of the objects defined above as well, for example groups names.

9.1 Simple clustering

A simple cluster of samples can be obtained with:
calculate a distance matrix between each sample (each array)
dst <- dist(t(exprs(gset)))
Hierarchical cluster analysis on above distance matrix
hh <- hclust(dst, method="average")

We can then plot the tree by sample name or by group name using the fl object created previously:
We will plot both of them on the same plot
par(mfrow=c(1,2))
plot default is by sample name
plot(hh)
label sample by group
plot(hh, label=fl)

G
S

M
11

27
89

4
G

S
M

11
27

89
7

G
S

M
11

27
90

0
G

S
M

11
27

89
2

G
S

M
11

27
89

6
G

S
M

11
27

89
0

G
S

M
11

27
89

3
G

S
M

11
27

89
1

G
S

M
11

27
89

5 G
S

M
11

27
89

8
G

S
M

11
27

89
9

G
S

M
11

27
90

122
0

23
0

24
0

25
0

26
0

Cluster Dendrogram

hclust (*, "average")
dst

H
ei

gh
t

G
1

G
1

G
2

G
0

G
1

G
0

G
0 G

0
G

1
G

2
G

2
G

222
0

23
0

24
0

25
0

26
0

Cluster Dendrogram

hclust (*, "average")
dst

H
ei

gh
t

16

par(mfrow=c(1,1))

Ideally all groups would cluster together, but it is common to find, as here, elements of a groups that cluster
with anohter.

9.2 Principal Component Analysis

The central idea of principal component analysis (PCA) is to reduce the dimensionality of a data
set consisting of a large number of interrelated variables, while retaining as much as possible of
the variation present in the data set. This is achieved by transforming to a new set of variables,
the principal components (PCs), which are uncorrelated, and which are ordered so that the first
few retain most of the variation present in all of the original variables2 (Jolliffe 2002).

PCA can be computed with the prcomp() function from the stats package installed by default in all R
installation. There is therefore no package to install.

prcomp() will a principal components analysis on the complete set of 54675 genes or probes within the gene
expression levels inside the dataset (exprs(gset)). Function t() transposes the data matrix. Results are
stored in object PC subsequenlty analysed by the predict() function to compute values for each sample.
Results are placed into object scores.
PC=prcomp(t(exprs(gset)))
scores = predict(PC)

As stressed in the definition above the first few components are useful.

Exercise:
* Can you determine how many components were calculated?
* Explore the class and content of scores.
(Hint: class() and dim(), print())
Can you print only the values of the first 2 PC?

9.2.1 PCA Plot

To make the plot code easier to follow it is best to prepare a few variables. Variable fl was defined previously
as a factor for the groups and is used below to identify the shape of samples on the plot as well as the colors
extract PC1 and PC2
pc1 <- scores[,1]
pc2 <- scores[,2]
Create a vector of number for choosing the plot symbol
We add 14 to reach the symbols that are filled
shape <- as.numeric(fl) + 14

We can now make a plot for the first 2 principal components and then add a legend:
plot(pc1, pc2, col=fl, pch=shape, cex=2)
legend("topright", pch=unique(shape), paste(unique(fl)))
legend("bottomright", pch=unique(shape), paste(unique(fl)))

2http://www.springer.com/us/book/9780387954424

17

http://www.springer.com/us/book/9780387954424

−50 0 50 100

−
10

0
−

50
0

50
10

0

pc1

pc
2

G0
G1
G2

cex=2 controls the size of the plotted shapes, here making them bigger.

The location of the legend can be controlled by a set of coordinates or predefined locations as used here. See
?legend for more details.

From this simple plot it seems that group G2 is more different than the other 2 groups.

Exercise:
* Make a similar plot for PC1 vs PC3
* Make a similar plot for PC1 vs PC4
* What happens if you use PC2 as horizontal axis?
* (Hints: it is not necessary to create pc objects, simply use scores[,3], scores[,4] etc.)

18

You would get images similar to this:

−50 0 50 100

−
10

0
−

50
0

50
10

0

PC1 vs PC3

pc1

sc
or

es
[,

3]
−50 0 50 100

−
50

0
50

10
0

PC1 vs PC4

pc1

sc
or

es
[,

4]

−100 −50 0 50 100

−
10

0
−

50
0

50
10

0

PC2 vs PC3

pc2

sc
or

es
[,

3]

−100 −50 0 50 100
−

50
0

50
10

0

PC2 vs PC4

pc2

sc
or

es
[,

4]

Notes: there are methods to plot this data in 3D with interactive (mouse) rotation with the package rgl and
the plotlm3d function3 but it is also possible to use the CRAN package scatterplot3d for static plots:
Install scatterplot3d if wanted
install.packages("scatterplot3d", repos="http://cran.us.r-project.org")

library(scatterplot3d)
#
par(mfrow=c(2,2))

Angle 50
scatterplot3d(scores[,1], scores[,2], scores[,3], xlab="PC1", ylab="PC2", zlab="PC3", pch=shape, color=as.numeric(fl), main="Angle 50", cex.symbols=2.0, angle=50)

Angle 40 (default)
scatterplot3d(scores[,1], scores[,2], scores[,3], xlab="PC1", ylab="PC2", zlab="PC3", pch=shape, color=as.numeric(fl), main="Angle 40 (default)", cex.symbols=2.0, angle=40)

3https://github.com/sr1919/R/blob/master/ext/protm3d.R

19

https://github.com/sr1919/R/blob/master/ext/protm3d.R

Angle 30
scatterplot3d(scores[,1], scores[,2], scores[,3], xlab="PC1", ylab="PC2", zlab="PC3", pch=shape, color=as.numeric(fl), main="Angle 30", cex.symbols=2.0, angle=30)

Angle 20
scatterplot3d(scores[,1], scores[,2], scores[,3], xlab="PC1", ylab="PC2", zlab="PC3", pch=shape, color=as.numeric(fl), main=" Angle 20", cex.symbols=2.0, angle=20)

Angle 50

−100 −50 0 50 100 150−
10

0
−

50

0
 5

0
 1

00
 1

50

−150
−100

 −50
 0

 50
 100

PC1

P
C

2

P
C

3

Angle 40 (default)

−100 −50 0 50 100 150−
10

0
−

50

0
 5

0
 1

00
 1

50
−150

−100
 −50

 0
 50

 100

PC1

P
C

2

P
C

3

Angle 30

−100 −50 0 50 100 150−
10

0
 −

50

0
 5

0
 1

00
 1

50

−150
−100

 −50
 0

 50
 100

PC1

P
C

2P
C

3

 Angle 20

−100 −50 0 50 100 150−
10

0
 −

50

0
 5

0
 1

00
 1

50

−150−100 −50 0
 50 100

PC1

P
C

2

P
C

3

par(mfrow=c(1,1))

20

9.3 Heatmaps

Additional packages needed from both CRAN (for gplots) and Bioconductor (for RColorBrewer). Run the
following installation code if necessary:
source("http://bioconductor.org/biocLite.R")
biocLite("RColorBrewer")
install.packages("gplots")

Load libraries:
library(RColorBrewer)
library(gplots)

–>

The heatmap can be constructed for each “contrast” for which we calculated a differential expression with
limma when we constructed the contrast matrix cont.matrix during the calculations with limma:

Contrasts
Levels G2 - G0 G1 - G0 G2 - G1

G0 -1 -1 0
G1 0 1 -1
G2 1 0 1

We can “grab” each contrast name by selecting each element of the column names, for example
colnames(cont.matrix)[2] yields G1 - G0 which we can plot below with a false discovery rate (FDR) of
0.01.

The number of genes defined here is the number of “probesets” representing the genes onto the array.

The object completeTopTable will contain the differential expression table values for the selected contrast.

From this table we can select only those genes/probesets that match the chosen criterion that FDR should
be less than the defined cut-off value, for example FDR < 0.01.

This creates the object selected which is a logical list of all the genes with TRUE or FALSE and can be used
as a “selector” to select the same genes within the gset expression values that are then stored in object
esetSel.
Define FDR cut-off, typically 0.05 or 0.01
FDR_cutoff <- 0.01

Calculate the number of genes
numGenes <- nrow(exprs(gset))

Extract a "contrast" from the contrast matrix
contrast <- colnames(cont.matrix)[2]

Select the differential expression for this specific contrast
for all genes and sorted by columns "B" which represents
the log-odds that a gene is differentially expressed.
completeTopTable <- topTable(fit2,coef=contrast, adjust="fdr", sort.by="B", number=numGenes)

Create a logical selector containing TRUE or FALSE
that defines if the gene meets the criterion about FDR
selected <- completeTopTable$adj.P.Val < FDR_cutoff

Create a subset of the expression set only for selected genes

21

esetSel <- gset[selected]

Check some esetSel properties. Dimensions
dim(esetSel)

Features Samples
43 12

Calculate the number of genes that are selected. This number
should be the same as the number of "Features" above.
sum(selected)

[1] 43
Create a heatmap with heatmap.2 that allows more colors
color gradient to represent the expression values of gene
heatmap.2(exprs(esetSel))
hmcol <- colorRampPalette(brewer.pal(9,"GnBu"))(100)
heatmap.2(exprs(esetSel), col=hmcol, main=c(" Heatmap for contrast " , contrast))

G
S

M
11

27
89

4

G
S

M
11

27
89

9

G
S

M
11

27
89

8

G
S

M
11

27
90

1

G
S

M
11

27
89

7

G
S

M
11

27
90

0

G
S

M
11

27
89

6

G
S

M
11

27
89

0

G
S

M
11

27
89

2

G
S

M
11

27
89

1

G
S

M
11

27
89

5

G
S

M
11

27
89

3

1552269_at
1552266_at
1552299_at
1552296_at
1552288_at
1320_at
1552276_a_at
1552271_at
1552293_at
1552261_at
1255_g_at
1431_at
1438_at
1552280_at
1552283_s_at
1552263_at
1405_i_at
1552278_a_at
1552272_a_at
1552281_at
1552258_at
1552301_a_at
1552289_a_at
1552302_at
117_at
121_at
1552264_a_at
1552287_s_at
1487_at
1552257_a_at
1494_f_at
1316_at
1552286_at
1552275_s_at
1552279_a_at
1552256_a_at
1552277_a_at
1552274_at
1552295_a_at
1552291_at
1053_at
1294_at
1007_s_at

 Heatmap for contrast
G1 − G0

2 6 10

Value

0
15

Color Key
and Histogram

C
ou

nt

The color of the plotted genes depends on the palette chosen. By default the colors would be red-to-yellow
but here we access one of the “green-blue” palettes from the RColorBrewer package. See ?brewer.pal for
all the color palettes descriptions.

From the total number of genes (54675) there are 43 that are selected for the plot. The number of genes is

22

the number of “probesets” onto the array.

The name of the Affymetrix probeset is listed on the right hand side of the heatmap. The function help
(?heatmap.2) reveals that the annotation of the “genes” is by default the row names of the object plotted
(rownames(x) for object x) and indeed:
rownames(esetSel)

[1] "1007_s_at" "1053_at" "117_at" "121_at"
[5] "1255_g_at" "1294_at" "1316_at" "1320_at"
[9] "1405_i_at" "1431_at" "1438_at" "1487_at"

[13] "1494_f_at" "1552256_a_at" "1552257_a_at" "1552258_at"
[17] "1552261_at" "1552263_at" "1552264_a_at" "1552266_at"
[21] "1552269_at" "1552271_at" "1552272_a_at" "1552274_at"
[25] "1552275_s_at" "1552276_a_at" "1552277_a_at" "1552278_a_at"
[29] "1552279_a_at" "1552280_at" "1552281_at" "1552283_s_at"
[33] "1552286_at" "1552287_s_at" "1552288_at" "1552289_a_at"
[37] "1552291_at" "1552293_at" "1552295_a_at" "1552296_at"
[41] "1552299_at" "1552301_a_at" "1552302_at"

Therefore, more manipulation is necessary to obtain the name gene symbol rather than the probeset to be
listed.

9.3.1 Finding the gene symbols

First we have to wonder and verify the class of object esetSel which should be an “annotated data frame
for expression sets”.
class(esetSel)

[1] "ExpressionSet"
attr(,"package")
[1] "Biobase"

This is the main final type of data structure for many microarray experiment based on the Affymetrix
platform. It contains the data and other annotations listed in various “slots.”
slotNames(esetSel)

[1] "experimentData" "assayData" "phenoData"
[4] "featureData" "annotation" "protocolData"
[7] ".__classVersion__"

We have explored before how to look at, extract and modify the phenoData. For this subset, the complete
phenotypic data information would have been transfered. You can verify that with the commands that we
know, for example pData(esetSel).

The “slot” of interest now is featureData which contains the actual data. While we used a helper function
pData() before, we can also access slot information with help of the @ nomenclature as shown below:
esetSel@featureData

An object of class 'AnnotatedDataFrame'
featureNames: 1007_s_at 1053_at ... 1552302_at (43 total)
varLabels: ID GB_ACC ... Gene.Ontology.Molecular.Function (16

total)
varMetadata: Column Description labelDescription

However, this compact output is not yet very useful and we need a little more work to get to what we need.
For example it would be nice to know the name of the various columns that make up this table of data:

23

colnames(esetSel@featureData)

[1] "ID" "GB_ACC"
[3] "SPOT_ID" "Species.Scientific.Name"
[5] "Annotation.Date" "Sequence.Type"
[7] "Sequence.Source" "Target.Description"
[9] "Representative.Public.ID" "Gene.Title"

[11] "Gene.Symbol" "ENTREZ_GENE_ID"
[13] "RefSeq.Transcript.ID" "Gene.Ontology.Biological.Process"
[15] "Gene.Ontology.Cellular.Component" "Gene.Ontology.Molecular.Function"

We should now be able to access and list the gene symbols, and we use the $ annotation to extract these
values:
esetSel@featureData$Gene.Symbol

[1] DDR1 /// MIR4640 RFC2
[3] HSPA6 PAX8
[5] GUCA1A MIR5193 /// UBA7
[7] THRA PTPN21
[9] CCL5 CYP2E1

[11] EPHB3 ESRRA
[13] CYP2A6 SCARB1
[15] TTLL12 LINC00152 /// LOC101930489
[17] WFDC2 MAPK1
[19] MAPK1 ADAM32
[21] SPATA17 PRR22
[23] PRR22 PXK
[25] PXK VPS18
[27] MSANTD3 SLC46A1
[29] SLC46A1 TIMD4
[31] SLC39A5 ZDHHC11 /// ZDHHC11B
[33] ATP6V1E2 AFG3L1P
[35] CILP2 CILP2
[37] PIGX TMEM196
[39] SLC39A13 BEST4
[41] AK9 CORO6
[43] TMEM106A
23521 Levels: ADAM32 AFG3L1P AK9 ALG10 ARMCX4 ATP6V1E2 BEST4 ... ZZZ3

Now that we know where these are and how to access them we should be able to change the annotation of
the heatmap with these gene symbols:
heatmap.2(exprs(esetSel), labRow=esetSel@featureData$Gene.Symbol)

But we can take this opportunity to also change the label for the samples and use the group label instead by
using the sml object containing the list of groups and passing this information with the labCol paramter:
heatmap.2(exprs(esetSel), labRow=esetSel@featureData$Gene.Symbol, labCol=sml)

24

G
1

G
2

G
2

G
2

G
1

G
2

G
1

G
0

G
0

G
0

G
1

G
0

SPATA17
ADAM32
AK9
BEST4
CILP2
PTPN21
VPS18
PRR22
TMEM196
WFDC2
GUCA1A
CYP2E1
EPHB3
TIMD4
ZDHHC11 /// ZDHHC11B
MAPK1
CCL5
SLC46A1
PRR22
SLC39A5
LINC00152 /// LOC101930489
CORO6
CILP2
TMEM106A
HSPA6
PAX8
MAPK1
AFG3L1P
ESRRA
TTLL12
CYP2A6
THRA
ATP6V1E2
PXK
SLC46A1
SCARB1
MSANTD3
PXK
SLC39A13
PIGX
RFC2
MIR5193 /// UBA7
DDR1 /// MIR4640

2 6 10

Value

0
60

Color Key
and Histogram

C
ou

nt

Note that the heatmap colors are that of the default since we have not specified here the color command as
previously using col=hmcol in the command.

We can finalize this version of the heatmap by adding one more optional parameter named ColSideColors
to color a horizontal side-bar to distinguish the groups. This is an optional parameter.

We know that the groups are contained within the object sml, an object of class “character” that we need to
transform into numeric values that can be factors. The as.numeric() function alone applied to sml would
yield a new vector of only NA values. That is why we first apply the function as.factor() to force this
output:
as.numeric(sml)

[1] NA NA NA NA NA NA NA NA NA NA NA NA
as.numeric(as.factor(sml))

[1] 1 1 1 1 2 2 2 2 3 3 3 3

Now that we have a vector reprenting the groups as numbers, we need to choose a palette and pass these
values. We can store this into a new object that we’ll use the in final heatmap command:
prepare vector of colors for heatmap
colside <- palette(brewer.pal(8,"Dark2"))[as.numeric(as.factor(sml))]
print values
colside

25

[1] "#DFEAF4" "#DFEAF4" "#DFEAF4" "#DFEAF4" "#F4DFDF" "#F4DFDF" "#F4DFDF"
[8] "#F4DFDF" "#F2CB98" "#F2CB98" "#F2CB98" "#F2CB98"

We can now make a final heatmap with all the additions we made, starting from a previous command:
heatmap.2(exprs(esetSel), col=hmcol, main=c(" Heatmap for contrast " , contrast), labRow=esetSel@featureData$Gene.Symbol, labCol=sml, ColSideColors=colside)

G
1

G
2

G
2

G
2

G
1

G
2

G
1

G
0

G
0

G
0

G
1

G
0

SPATA17
ADAM32
AK9
BEST4
CILP2
PTPN21
VPS18
PRR22
TMEM196
WFDC2
GUCA1A
CYP2E1
EPHB3
TIMD4
ZDHHC11 /// ZDHHC11B
MAPK1
CCL5
SLC46A1
PRR22
SLC39A5
LINC00152 /// LOC101930489
CORO6
CILP2
TMEM106A
HSPA6
PAX8
MAPK1
AFG3L1P
ESRRA
TTLL12
CYP2A6
THRA
ATP6V1E2
PXK
SLC46A1
SCARB1
MSANTD3
PXK
SLC39A13
PIGX
RFC2
MIR5193 /// UBA7
DDR1 /// MIR4640

 Heatmap for contrast
G1 − G0

2 6 10

Value

0
15

Color Key
and Histogram

C
ou

nt

9.3.2 Exercise

Can you add color sides for the rows?

Can you plot the other contrasts?

9.4 MA Plot

We have seen MA plots in the previous workshop.

An improved method, which is basically a scaled, 45 degree rotation of the R vs. G plot is
an MA-plot.[2] The MA-plot is a plot of the distribution of the red/green intensity ratio (‘M’)
plotted by the average intensity (‘A’). M and A are defined by the following equations. Review:
https://en.wikipedia.org/wiki/MA_plot

The MA plots were defined at a time where the experimental and control experiments were both on the same
array and labelled with red and green dyes but the same principles and calculations can apply to simple

26

https://en.wikipedia.org/wiki/MA_plot

arrays.

A is the average log-expression and is used as the horizontal axis.

M is the log fold-change and is used on the vertical axis.

Horizontal lines are often shown at -1 and 1 for −log2(2) and +log2(2) representing the 2-fold change limit.

9.4.1 Plot our selected genes

With the same selected genes we can also create an MA plot for the same contrast.

The simplest command would be plotMA(fit2[,1]) to plot the first contrast ([,1]) but we can make it a
bit better and mark significant genes.

We prepare an object named status to define if the gene is “significant” and this information will be
automatically be plotted (top left) together with the legend.
Prepare the "status" parameter to distinguish
differentially expressed genes on the plot
Check the number of genes (probesets)
number_genes <- dim(exprs(gset))[1]
create a new object as long as the number of gens
Each position will contain "" (nothing) at first
status <- character (length=number_genes)
fill object with "not changing" at every position
status <- rep ("not changing", number_genes)
add a name attribute, in the form of gene number
names (status) <- seq (1, number_genes, 1)
change the value to "significant" for the selected genes
status [selected] <- "significant"

Make the MA plot using the "status" option to show selected genes
The "values" option can separate options to be plotted
(Compare with the simpler plot command below.)
The plot symbols are chosen with the "pch" option.
plotMA(fit2[,1], status=status, values=c("not changing", "significant"), col=c("blue","red"), pch=c(46,20))
Simpler plots
plotMA(fit2[,1]) # no colors
plotMA(fit2[,1], status=status, col=c("red","blue"))
Add text info
text(x=12, y=9, labels=paste("FDR = ", FDR_cutoff), col="black", font=2)
Add horizontal lines at +-log2(2) to mark 2X fold change
abline(h=c(1,-1), col="green")

27

0 5 10 15

−
5

0
5

10
G2 − G0

Average log−expression

lo
g−

fo
ld

−
ch

an
ge

not changing
significant

FDR = 0.01

9.4.2 Exercise

Can you plot the other contrasts?

Can you alter colors?

Can you change plot symbols?

10 Online practical exercises for microarray data analysis

A document titled “A Tutorial Review of Microarray Data Analysis” provides statistical background on
analysis and is accompanied by a series of exercises.

The document is available in PDF at http://www.ub.edu/stat/docencia/bioinformatica/microarrays/ADM/
slides/A_Tutorial_Review_of_Microarray_data_Analysis_17-06-08.pdf (and is archived at: http://bit.ly/
1QAuuT9)

The practical exercises page is at http://www.ub.edu/stat/docencia/bioinformatica/microarrays/ADM/
practicalExs.htm (archived: http://bit.ly/1Lbo91D)

28

http://www.ub.edu/stat/docencia/bioinformatica/microarrays/ADM/slides/A_Tutorial_Review_of_Microarray_data_Analysis_17-06-08.pdf
http://www.ub.edu/stat/docencia/bioinformatica/microarrays/ADM/slides/A_Tutorial_Review_of_Microarray_data_Analysis_17-06-08.pdf
http://bit.ly/1QAuuT9
http://bit.ly/1QAuuT9
http://www.ub.edu/stat/docencia/bioinformatica/microarrays/ADM/practicalExs.htm
http://www.ub.edu/stat/docencia/bioinformatica/microarrays/ADM/practicalExs.htm
http://bit.ly/1Lbo91D

11 Session info

sessionInfo()

R version 3.3.3 (2017-03-06)
Platform: x86_64-apple-darwin13.4.0 (64-bit)
Running under: OS X El Capitan 10.11.6

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] parallel stats graphics grDevices utils datasets methods
[8] base

other attached packages:
[1] gplots_3.0.1 RColorBrewer_1.1-2 scatterplot3d_0.3-40
[4] affy_1.52.0 limma_3.30.13 GEOquery_2.40.0
[7] Biobase_2.34.0 BiocGenerics_0.20.0 knitr_1.15.1

loaded via a namespace (and not attached):
[1] Rcpp_0.12.10 magrittr_1.5 zlibbioc_1.20.0
[4] R6_2.2.0 highr_0.6 stringr_1.2.0
[7] httr_1.2.1 caTools_1.17.1 tools_3.3.3

[10] KernSmooth_2.23-15 gtools_3.5.0 htmltools_0.3.6
[13] yaml_2.1.14 rprojroot_1.2 digest_0.6.12
[16] preprocessCore_1.36.0 affyio_1.44.0 codetools_0.2-15
[19] bitops_1.0-6 RCurl_1.95-4.8 evaluate_0.10
[22] rmarkdown_1.5 gdata_2.17.0 stringi_1.1.5
[25] BiocInstaller_1.24.0 backports_1.0.5 XML_3.98-1.7

References

Barrett, T., S. E. Wilhite, P. Ledoux, C. Evangelista, I. F. Kim, M. Tomashevsky, K. A. Marshall, et al.
2013. “NCBI GEO: archive for functional genomics data sets–update.” Nucleic Acids Res. 41 (Database
issue): D991–995.

Benjamini, Yoav, and Yosef Hochberg. 1995. “Controlling the False Discovery Rate: A Practi-
cal and Powerful Approach to Multiple Testing.” J. Roy. Statist. Soc. Ser. B 57 (1): 289–300.
http://links.jstor.org/sici?sici=0035-9246(1995)57:1<289:CTFDRA>2.0.CO;2-E.

Davis, Sean, and Paul Meltzer. 2007. “GEOquery: A Bridge Between the Gene Expression Omnibus (Geo)
and Bioconductor.” Bioinformatics 14: 1846–7.

Jolliffe, I.T. 2002. Principal Component Analysis. 2nd ed. Boca Raton, Florida: Springer-Verlag New York.
http://www.springer.com/us/book/9780387954424.

Ritchie, Matthew E, Belinda Phipson, Di Wu, Yifang Hu, Charity W Law, Wei Shi, and Gordon K Smyth.
2015. “limma Powers Differential Expression Analyses for RNA-Sequencing and Microarray Studies.” Nucleic
Acids Research 43 (7): e47.

Wheelwright, M., E. W. Kim, M. S. Inkeles, A. De Leon, M. Pellegrini, S. R. Krutzik, and P. T. Liu. 2014.
“All-trans retinoic acid-triggered antimicrobial activity against Mycobacterium tuberculosis is dependent on

29

http://links.jstor.org/sici?sici=0035-9246(1995)57:1%3C289:CTFDRA%3E2.0.CO;2-E
http://www.springer.com/us/book/9780387954424

NPC2.” J. Immunol. 192 (5): 2280–90.

Xie, Yihui. 2014. “Knitr: A Comprehensive Tool for Reproducible Research in R.” In Implementing
Reproducible Computational Research, edited by Victoria Stodden, Friedrich Leisch, and Roger D. Peng.
Chapman; Hall/CRC. http://www.crcpress.com/product/isbn/9781466561595.

———. 2015. Dynamic Documents with R and Knitr. 2nd ed. Boca Raton, Florida: Chapman; Hall/CRC.
http://yihui.name/knitr/.

———. 2016. Knitr: A General-Purpose Package for Dynamic Report Generation in R. http://yihui.name/
knitr/.

30

http://www.crcpress.com/product/isbn/9781466561595
http://yihui.name/knitr/
http://yihui.name/knitr/
http://yihui.name/knitr/

	Introduction
	Prerequisites
	CRAN packages
	Bioconductor modules

	knitr
	Create a new project
	R Markdown script file
	Caching

	The GEO database
	Explore the GEO page
	Analysis based on GEO2R script
	Load the Bioconductor libraries:
	Command getGEO() and R lists
	Load the dataset
	Explore the new dataset structure
	Samples: phenotypic data
	Sample labels
	Making groups
	Log transform
	Proceed with analysis
	Update annotations
	Write output results table into a file

	Box plots
	The complete GEO2R code:
	Continuation

	GEO2R ends
	Adding to GEO2R results
	Simple clustering
	Principal Component Analysis
	Heatmaps
	MA Plot

	Online practical exercises for microarray data analysis
	Session info
	References

