
Rosetta ligand docking tutorial

RosettaCommons 1 and Jean-Yves Sgro 2

1https://www.rosettacommons.org
2Biochemistry Dpt, University of Wisconsin-Madison

original: 2017 - (last updated by JYS: 2024-09-03)

Abstract

This is a “rewrite” of the Rosetta ligand_docking_tutorial.md with com-
ments on how to combine Docker Container and macOS.

Contents

1 Rewrite Summary . 3

2 Rosetta . 3

3 Preparations . 3

3.1 Rosetta preparations . 4

3.2 Getting Started . 4

4 Following the original tutorial 7

5 Modified Tutorial . 8

5.1 Ligand Docking with a G-Protein Coupled Receptor . . . 8

5.2 Step 1 . 9

5.3 Analysis . 18

5.4 Analysis step 1: . 18

5.5 Analysis step 2: . 18

5.6 Analysis step 3: RMSD plots 20

5.7 Notes on biding pockets 22

Rosetta ligand docking tutorial

6 Appendix . 23

6.1 R code . 24

6.2 Python 3 code . 24

2

Rosetta ligand docking tutorial

1 Rewrite Summary
This is a “rewrite” of the Rosetta ligand_docking_tutorial.md file in R-
markdown with comments on how to combine Docker Container and macOS.
(There are no Windows binaries.)
Summary: Combine software and scripts on Docker and local macOS computer
(Intel amd64 or arm64 Silicon Chip M series) to follow successfully the Rosetta
tutorial Ligand Docking with a G-Protein Coupled Receptor. This method
will allow access to the native OS speed while fulfilling all preparatory and
exploratory steps that fail or are too complex to set-up on the local computer.

2 Rosetta
The Rosetta software suite includes algorithms for computational
modeling and analysis of protein structures. [. . .] including de novo
protein design, enzyme design, ligand docking, and structure predic-
tion of biological macromolecules and macromolecular complexes.

The software is rather complex and it can be difficult to “make things work”
considering the breadth of options for algorithms or hardware and operating
system support. This method will allow to access the native OS speed while
fulfilling all preparatory and exploratory steps.
This post is an attempt to help users that want to use the software on their
native OS (macOS) but since some functionality built-in the tutorials assumes a
Linux OS, some of the steps are in fact easier handled on the Linux side thanks
to Docker.

3 Preparations
These instructions should benefit macOS users primarily as there are no Win-
dows binaries available. Windows users should use the WSL2 method to install
Linux under Windows.
Users should be somewhat familiar with bash command line (see e.g. my Sur-
vival Command Line tutorial) and have the Docker Desktop software installed
(see e.g. my tutorial Docker – Beginner for Biologists.)
The Rosetta Docker image can be downloaded from Terminal with the com-
mand below, assuming that Docker is already installed:

3

https://github.com/RosettaCommons/demos/tree/main/tutorials/ligand_docking
https://www.docker.com/
https://www.rosettacommons.org/demos/latest/tutorials/ligand_docking/ligand_docking_tutorial
https://www.rosettacommons.org/software
https://learn.microsoft.com/en-us/windows/wsl/install
https://bcrf.biochem.wisc.edu/nix-tutorials-survival-command-line/
https://bcrf.biochem.wisc.edu/nix-tutorials-survival-command-line/
https://bcrf.biochem.wisc.edu/docker-beginner-for-biologists/

Rosetta ligand docking tutorial

docker pull rosettacommons/rosetta:latest

While the purpose of the Docker image is to provide access to all the Linux
compiled binaries, we will take advantage of some of the Linux functionality as
well as the installed Python within.

3.1 Rosetta preparations
Rosetta is freely available for academic and non-commercial purposes, under
license. The software can be downloaded from the links provided on the Down-
load page.
In order to compute the docking computation “natively” (for faster results) on
the local computer users should download the newest “release”, e.g. from the
Academic download page.
For this post I used Rosetta 3.14 for M1 (Silicon Chip “M1 binaries”, 13Gb)
Macintosh, Intel-based Mac users should download the “Mac binaries” (14Gb).

Note: Unarchiving the file will require about 45 Gb of disk space
but will contain the material for all tutorials and demos.

3.2 Getting Started
We will use 2 Terminal sessions: one to navigate within the Macintosh natively.
The other to run a Docker container that will be activated in a way so that both
Terminal sessions will share the same directory area on the local computer.
When Terminal is running you can choose a different color for each shell using
the Shell > New Window menu cascade. (Basic is white background.)
Here we’ll use a blue background for when we are looking within the Docker
Container, and a pale yellow when we are on the macOS side:

echo pale yellow means macOS side

A pale yellow Terminal can be obtained with the menu cascade:
Shell > New Window > Man Page

echo light blue means we are running from inside the Linux container

A blue background (with white text) can be obtained with the menu cascade:
Shell > New Window > Ocean

4

https://github.com/RosettaCommons/rosetta/blob/main/LICENSE.md
https://github.com/RosettaCommons/rosetta/blob/main/LICENSE.md
https://www.rosettacommons.org/software/license-and-download
https://www.rosettacommons.org/software/license-and-download
https://www.rosettacommons.org/software/academic
https://www.rosettacommons.org/downloads/academic/3.14
https://www.rosettacommons.org/downloads/academic/3.14/rosetta_bin_m1_3.14_bundle.tar.bz2
https://www.rosettacommons.org/downloads/academic/3.14/rosetta_bin_mac_3.14_bundle.tar.bz2

Rosetta ligand docking tutorial

Note: the colored background will only be visible in the HTML
versions. (PDF versions are better for printing.)

3.2.1 Environment variables on macOS Terminal

On the Macintosh side it will be useful to create environment variables as sug-
gested in the Rosetta Commons section How To Read These Tutorials. Assum-
ing that the binaries are found within the Downloads directory, we can keep that
location and its default name.
For the M1 series the unarchived directory was called rosetta.binary.m1.release-

371 and the following variables below were created. I replaced my username by
$USER so that these commands become generic and can be copied, with the
caveat that the binary name might be different (change accordingly!)
Open a Mac Terminal (/Applications/Utilities/Terminal.app) and paste
the (edited) commands:

export ROSETTA3=/Users/$USER/Downloads/rosetta.binary.m1.release-371/main/source

export ROSETTA3_DB=/Users/$USER/Downloads/rosetta.binary.m1.release-371/main/database

export ROSETTA_TOOLS=/Users/$USER/Downloads/rosetta.binary.m1.release-371/main/tools

export ROSETTA3_DEMOS=/Users/$USER/Downloads/rosetta.binary.m1.release-371/main/demos

These commands can me made “permanent” by including them within the
.zshrc or .bashrc files for the zsh or bash shell choice respectively. (You can
know your shell with command echo $SHELL)

3.2.2 Start the Docker container

Open a new Terminal and select a different color to better distinguish this
Terminal with the Top menu cascade: Shell > New Window > Ocean

Navigate the the top level of the release directory within the main directory.
For me it would be as follows. . .

cd /Users/$USER/Downloads/rosetta.binary.m1.release-371/main/

Note: the container is not yet running, hence this command is printed with a
pale yellow background i.e. we are still on the macOS side.
Verify that this was successful with pwd and then continue.
Launch the Docker container: The -v option lets us share the current directory
(i.e. main, with the container, mapping it as /data within the container, and
making it the default working directory with the -w option.

5

https://www.rosettacommons.org/demos/latest/tutorials/How_To_Read_These_Tutorials/Tutorial_Setup

Rosetta ligand docking tutorial

This command is given to macOS. Once we are running, we’ll be in the “blue”
session i.e. within the Linux OS.

docker run -it --rm -v ${PWD}:/data -w /data rosettacommons/rosetta

(Note: on a Silicon M series Mac Docker will complain about the “platform”
but this can be ignored.)
A listing of the files and directories should reveal the same content as the main
directory. We are now within the Linux container and therefore we’ll use blue
background.
The shell prompt will be shown as # preceded by the working directory as /data
which is omitted for easier copy/paste of the commands.

ls -F

The result should be similar to the following:

CITING_ROSETTA.md README.md rosetta_scripts_scripts/

CLA.md database/ source/

CONTRIBUTING.md demos/ tests/

LICENSE.md documentation/ tools/

PyRosetta.notebooks/ pyrosetta_scripts/

We can check a couple more things: the shell as well as the operating system:

echo $SHELL

/bin/bash

cat /etc/os-release

Will show that we are running Ubuntu:

NAME="Ubuntu"

VERSION="20.04.6 LTS (Focal Fossa)"

ID=ubuntu

ID_LIKE=debian

PRETTY_NAME="Ubuntu 20.04.6 LTS"

VERSION_ID="20.04"

HOME_URL="https://www.ubuntu.com/"

SUPPORT_URL="https://help.ubuntu.com/"

BUG_REPORT_URL="https://bugs.launchpad.net/ubuntu/"

PRIVACY_POLICY_URL="https://www.ubuntu.com/legal/terms-and-policies/privacy-policy"

6

Rosetta ligand docking tutorial

VERSION_CODENAME=focal

UBUNTU_CODENAME=focal

Within the Docker container we don’t really need the ROSETTA environment vari-
ables as all paths can start with /data to be “absolute” (i.e. non ambiguous.)

3.2.3 Docker Container additional set-up

The tutorial assumes that the user is sitting in front of the fully functional
Linux computer, including graphical interface, with all ancillary software needed
for such a computer already installed. However, within the container a few
important utilities are missing, so we need to add them now.
The command whoami will confirm that we are running as root as is indicated
by the # prompt. This means that we can install any software we need. The
first command provides Ubuntu with information needed to know where to
download the software we ask to install. On the second line we ask to install
(yes by default with -y) 3 software
Issue the following commands after the # prompt:

apt-get update

apt-get install -y wget nano pymol

With these installed we can run all of the commands in the tutorial. Adding the
pymol Python module will allow the creation of PyMOL .pse files as well as a
specific python script, as described in the tutorial, from the Docker Container
Terminal.

4 Following the original tutorial
This document is a modification of the original tutorial Ligand Docking with a
G-Protein Coupled Receptor with added information. A short version is available
in the Blog entry about this specific tutorial. This document contains all original
writing.
From this point below we’ll start using the original tutorial with the following
modifications:

1. Both macOS and Linux (Container) commands will be shown if it is
possible to run on either side.

7

https://www.rosettacommons.org/demos/latest/tutorials/ligand_docking/ligand_docking_tutorial
https://www.rosettacommons.org/demos/latest/tutorials/ligand_docking/ligand_docking_tutorial
https://bcrf.biochem.wisc.edu/2024/05/17/rosetta-ligand-docking-help-with-docker/

Rosetta ligand docking tutorial

2. On macOS the $ROSETTA environment variables will be used. On Linux
we can simply use /data. The replace <path-to-Rosetta> in the original
commands.

3. We’ll continue coloring the command bacground to help indicate the OS
used.

4. The section numbering will mimic as closely as possible the numbering
of the original document.

5 Modified Tutorial
From this point the text is mostly from the original tutorial, with added options
to run from macOS or Linux as well as additional explanations on the commands
used.
KEYWORDS: LIGANDS DOCKING
Bold text means that these files and/or this information is provided.

Italicized text means that this material will NOT be conducted during the work-
shop

fixed width text means you should type the command into your terminal (after > sign)

If you want to try making files that already exist (e.g., input files), write them
to a different directory! (mkdir my_dir)
In addition to following this sample docking problem, the user is encouraged to
review the Rosetta user guide including the section on ligand-centric movers for
use with RosettaScripts.

https://www.rosettacommons.org/docs/latest/

5.1 Ligand Docking with a G-Protein Coupled Recep-
tor
The experimental data for this tutorial is derived from: Chien, E. Y. T. et
al. Structure of the human dopamine D3 receptor in complex with a
D2/D3 selective antagonist. Science 330, 1091-5 (2010).

8

https://www.rosettacommons.org/docs/latest/

Rosetta ligand docking tutorial

This particular D3/eticlopride protein-ligand complex was used as a target in
the GPCR Dock 2010 assessment, the results of which are discussed here:
Kufareva, I. et al. Status of GPCR modeling and docking as reflected
by community-wide GPCR Dock 2010 assessment. Structure 19, 1108-
1126 (2011).

If you are interested in more information on the performance of Rosetta in
modeling and docking D3/GPCRs in general, please consult Nguyen, E. D.
et al. Assessment and challenges of ligand docking into comparative
models of g-protein coupled receptors. PLoS One 8, (2013).

Dopamine is an essential neurotransmitter that exhibits its effects through five
subtypes of dopamine receptors, important members of class A G-protein cou-
pled receptors (GPCRs). Both subtype two (D2R) and subtype three (D3R)
function via inhibition of adenyl cyclase, and modulation of these two receptors
has clinical applications in treating schizophrenia. However, the high degree of
binding site conservation between D2R and D3R makes it difficult to generate
pharmacological compounds that selectively bind one or the other, and thereby
reducing side effects.
Today, we will examine how eticlopride, a D2R/D3R antagonist, binds to human
D3R.
A crystal structure is available for the D3R and eticlopride complex (PDB:
3PBL), but for the purposes of this exercise, we will model the protein-ligand
interactions anyways. In reality, you may be using a comparative model rather
than a crystal structure for the protein receptor, but the steps in this tutorial
will apply to both.
For this exercise, we’ll be doing our pre-docking preparations in the pro

tein_prep and ligand_prep folders. The modeling will be done in the
docking folder. The scripts folder contains helpful ligand docking specific
scripts that we’ll be using during this tutorial (you should never be copying
files to or from this folder). All necessary files are also prepared in the answers
directory in case you get stuck.

5.2 Step 1
Go to the desired location:
Navigate to the ligand_docking directory where you will find the ligand_prep,
protein_prep, docking, and answers folders.
On macOS Terminal:

9

https://www.rcsb.org/structure/3pbl

Rosetta ligand docking tutorial

macOS

cd $ROSETTA3_DEMOS/tutorials/ligand_docking/protein_prep

On Container Terminal:

#Container

cd /data/demos/tutorials/ligand_docking/protein_prep

5.2.1 Step 2: prepare human dopamine 3 receptor

Prepare a human dopamine 3 receptor structure. We will do this by obtaining
the crystal structure (3PBL) and removing the excess information.
The first step has to be accomplished on the Docker Container side as the called
python script clean_pdb.py calls on wget to download a PDB file but wget is
not installed on macOS by default. The clean_pdb.py script then calls on zcat

to unarchive the file. However, on macOS this software behaves differently and
expect a file ending with .Z and cause a “file not found” error. Thus it is best
to accomplish this task on the Container side, but since we are sharing the
directories these will “magically” appear on the macOS side as well!
2.1. Change into the protein_prep directory with the cd command:
We can verify that we are already within the protein_prep directory from the
last command above.

pwd

The original Tutorial suggested to download the PDB file, but the clean_pdb.py
script will download it anyway so it is not really necessary.

2.2. Download 3BLP (pdb format) from http://www.rcsb.org/pdb/
home/home.do into the protein_prep directory.

The clean_pdb.py script will allow you to strip the PDB of information other
than the desired protein coordinates. The ‘A’ option tells the script to ob-
tain chain A only. The full crystal structure consists of two monomers as a
crystallization artifact.
On the Container Terminal type:

/data/tools/protein_tools/scripts/clean_pdb.py 3PBL.pdb A

10

https://www.rcsb.org/structure/3pbl
http://www.rcsb.org/pdb/home/home.do
http://www.rcsb.org/pdb/home/home.do

Rosetta ligand docking tutorial

2.3. There are two output files from clean_pdb.py: 3PBL_A.pdb contains a sin-
gle chain of the protein structure and 3PBL_A.fasta contains the corresponding
sequence. 3PBL_A.pdb is the receptor structure we will be using for docking,
copy this into the docking directory.

cp 3PBL_A.pdb ../docking

Note: This structure has a T4-lysozyme domain instead of the third cytoplasmic
loop as a stabilizing feature for crystallography. Normally, we would truncate
this lysozyme segment and perform loop modeling as discussed in the com-
parative modeling tutorial to regenerate the intracellular loop. However in the
interest of time, we will use the lysozyme containing structure as the eticlopride
binding site is far from the intracellular domain.

5.2.2 Step 3: prepare the ligand files

Next, we will prepare the ligand files by generating parameters using a eticlopride
conformational library.
For more information about the ligand preparation, check ligand preparation
tutroial| prepare_ligand.
3.1. cd into the directory named ligand_prep

cd ../ligand_prep

3.2.In the directory, you will find a pair of already prepared files: eticlo

pride.sdf and eticlopride_conformers.sdf

3.2.1. eticlopride.sdf: This contains the eticlopride structure found in the
3PBL protein complex.
Note: You can also find the ligand file from this particular PDB structure by go-
ing to the 3PBL page and scrolling down to the “Ligand Chemical Component”
section. From there, you can click “Download” under the ETQ identifier.
3.2.2. eticlopride_conformers.sdf: This is a library of conformations for
eticlopride generated outside of Rosetta. The downloaded ligand .sdf file only
contains conformations found in the PDB so we must expand the library to
properly sample the conformational space. We also need to add hydrogens
since they are not resolved in the crystal structure. Feel free to open the file in
PyMOL and use the arrow keys to scroll through the different conformations:

Do not run

pymol eticlopride_conformers.sdf

11

https://www.rosettacommons.org/demos/latest/tutorials/prepare_ligand/prepare_ligand_tutorial
https://www.rosettacommons.org/demos/latest/tutorials/prepare_ligand/prepare_ligand_tutorial
https://www.rcsb.org/structure/3PBL

Rosetta ligand docking tutorial

The command pymol eticlopride_conformers.sdf assumes a Linux computer
with a full Graphical interface and will not work on macOS or within the Docker
Container as it is running as “Text-only.”
To open PyMOL from command line on a Mac use the command:

open -a /Applications/PyMOL.app

Then slide the file eticlopride_conformers.sdf onto PyMOL with your mouse
(using the file name as argument does not currently open it on macOS.) If you
are not sure where the file is on your Mac, the following 2 commands will open
the folder where it’s located:

Go to location:

cd ROSETTA3_DEMOS/tutorials/ligand_docking/ligand_prep

Open current folder represented by a dot: .

open .

This particular conformational library was generated using the Meiler lab’s Bio-
ChemicalLibrary (BCL). The BCL is a suite of tools for protein modeling, small
molecule calculations, and machine learning. If you’re interested in licensing
the BCL, please visit http://www.meilerlab.org/bclcommons or ask one of the
instructors.
Other methods of ligand conformer generation include OpenEye’s MOE soft-
ware, CSD Mercury software (CSD Conformer Generator) and web-servers such
as Frog 2.1 or DG-AMMOS. The generated libraries will differ depending on
the chosen method.
3.2.3. Generate a .params file and associated PDB conformations with
Rosetta atom types for eticlopride. A .params file is necessary for ligand dock-
ing because Rosetta does not have records for custom small molecules in its
database.
This step is done using the script molfile_to_params.py.
Note: This command can be run from either Terminal. . . However, the first line
of the script reads: #!/usr/bin/env python which assumes that the computer
environment has a python path defined. On my Mac it is currently defined as
python3 and therefore it complains with env: python: No such file or direc

tory. This is fixed easily by adding python3 in front of the actual command on
the macOS side.

12

http://www.meilerlab.org/bclcommons
https://en.wikipedia.org/wiki/OpenEye_Scientific_Software
https://www.ccdc.cam.ac.uk/solutions/software/csd-conformer-generator/
https://bioserv.rpbs.univ-paris-diderot.fr/services/Frog2/
http://mobyle.rpbs.univ-paris-diderot.fr/cgi-bin/portal.py#forms::DG-AMMOS

Rosetta ligand docking tutorial

You can run this step with either of the following commands. The first one
could also work on Mac if python is defined as such. For the Mac Terminal
option I make use of the environment variable $ROSETTA3. You can use the
option -h first as suggested in the tutorial to understand the meaning of the
command:
Option 1 (In Container):

Show help

/data/source/scripts/python/public/molfile_to_params.py -h

Run

/data/source/scripts/python/public/molfile_to_params.py -n ETQ -p ETQ --conformers-in-one-file eticlopride_conformers.sdf

Option 2 (Mac Terminal):

Show help:

python3 $ROSETTA3/scripts/python/public/molfile_to_params.py

Run

python3 $ROSETTA3/scripts/python/public/molfile_to_params.py -n ETQ -p ETQ --conformers-in-one-file eticlopride_conformers.sdf

Note: You may encounter a warning about the number of atoms in the residue.
This is okay as Rosetta is merely telling you that the ligand has more atoms
than an amino acid.
File ETQ.params contains the necessary information for Rosetta to process the
ligand, ETQ.pdb contains the first conformation, and ETQ_conformers.pdb con-
tains the rest of the conformational library.
Note: The tutorial assumes that we are within the ligand_prep/ directory, but
also calls the sdf file with ligand_prep/eticlopride_conformers.sdf which
will cause an error since we are already within that directory. Thus the directory
name has been removed from the above commands.
3.2.4. If you use the tail command on ETQ.params, you will notice the
PDB_ROTAMERS property line that tells Rosetta where to find the conformational
library. Make sure this line has ETQ_conformers.pdb as the property.

tail ETQ.params

Note: The same command could be given on the macOS side as well.
3.2.5. Now that we have the necessary files for ligand docking, let’s copy them
over the ligand_docking directory.

13

Rosetta ligand docking tutorial

cp ETQ* ../

Note: The same command could be given on the macOS side as well. Remem-
ber that bot Terminal are “looking within” the exact same directory.

5.2.3 Step 4: Final preparations in the docking directory

Now we want to make our final preparations in the docking directory.
4.1. Switch over to our ligand_docking directory

cd ../

4.2. Open up our prepared receptor and ligand structures to examine the com-
plex

Do not run

pymol 3PBL_A.pdb ETQ.pdb

The command pymol 3PBL_A.pdb ETQ.pdb invites to explore the complex graph-
ically. Use the methods described previously for graphical exploration.
(Original NOTE: if you cannot open pymol from the command line, you may
need to set up your bash environment.)
Now make a pdb file by concatenating your protein and ligand, running this
script:

cp protein_prep/3PBL_A.pdb .

cat 3PBL_A.pdb ETQ.pdb > 3PBL_ETQ.pdb

If you don’t have these files, copy them from the answers directory:

cp answers/docking/3PBL_ETQ.pdb .

4.3. Tip: ‘All->Action->preset->ligand sites->cartoon’ will help you visualize
the protein/ligand interface. The All button is denoted by a single letter “A”
in Pymol GUI.
Since this is a rudimentary exercise, we will start with the ligand in the protein
binding site.
In practical application, we may need to define a starting point with the Start-
From mover or to manually place the ligand into an approximate region using
PyMOL.

14

https://www.rosettacommons.org/docs/latest/scripting_documentation/RosettaScripts/Movers/movers_pages/StartFromMover
https://www.rosettacommons.org/docs/latest/scripting_documentation/RosettaScripts/Movers/movers_pages/StartFromMover

Rosetta ligand docking tutorial

4.4. Once you close PyMOL, make sure Rosetta has these four necessary input
structure/parameter files in the ligand_docking tutorial directory. If you are
missing any of these, copy them from ../answers/docking/

• 3PBL_A.pdb: a single chain of the protein receptor structure

• ETQ.pdb: a default starting conformation for eticlopride

• ETQ_conformers.pdb: A pdb file containing all conformers generated
from the eticlopride library.

• ETQ.params: a Rosetta parameter file that provides the necessary prop-
erties for Rosetta to treat eticlopride

5.2.4 Step 5: Rosetta wrapper and helpers

Next we need to make sure we have the proper RosettaScripts|rosetta_scripting
XML file, input options file, and crystal complex (correct answer). These files
are provided to you as dock.xml, options.txt, and crystal_complex.pdb.
Copy these to your ligand_docking directory:

Remember that . is the current dir

cp docking/dock.xml .

cp docking/options .

cp docking/crystal_complex.pdb .

• dock.xml - This is the RosettaScripts XML file that tells Rosetta the
type of sampling and scoring to do. It defines the scoring function
and provides parameters for both low-resolution coarse sampling and
high-resolution Monte Carlo sampling.

• options.txt - This is the options file that tells Rosetta where to locate
our input PDB structures and ligand parameters. It also directs Rosetta
to the proper XML file.

• crystal_complex.pdb - This is the D3-eticlopride complex from the PDB.
It will serve as the correct answer in our case allowing us to make com-
parisons between our models and actual structures.

5.2.5 Step 6: Run the docking study

Note: This is the point where using macOS binaries would prove valuable for
larger computations and when it is useful to have the macOS binaries installed.
For large projects the Mac binaries will run faster than running those within

15

https://new.rosettacommons.org/demos/latest/tutorials/scripting_with_rosettascripts/scripting_with_rosettascripts

Rosetta ligand docking tutorial

the Docker Container by emulation which would mean a double emulation on
an M Series Silicon Mac: one to convert the Linux code, and the second to
convert from Intel (amd64) to Silicon Chip (arm64), which is done seemlesly
for Mac users by a utility aptly called “Rosetta2” but has not connection with
the Rosetta we are using for protein or docking computations!
IMPORTANT NOTE : The name of the binary will differ depending on the
operating system.
Run the docking study (This should take a few minutes at most, as we’re using
a reduced number of output structures):
The command in the original tutorial assumes a standard installation, with
binary:

$> $ROSETTA3/bin/rosetta_scripts.linuxgccrelease @options

However, within the Docker Container the binaries have a different naming
convention. The binaries within the container are within /usr/local/bin and
the specific one to call for this section is named:

rosetta_scripts.cxx11threadserialization.linuxgccrelease

On the Mac it will be:

$ROSETTA3/bin/rosetta_scripts.static.macosclangrelease

To run the docking use the appropriate binary, followed by @options

On the Mac it would be:

$ROSETTA3/bin/rosetta_scripts.static.macosclangrelease @options

5.2.6 Step 7: Rosetta models

The Rosetta models are saved with the prefix 3PBL_ETQ_ followed by a four
digit identifier such as 3PBL_ETQ_0001.pdb. Each model PDB contains the
coordinates and Rosetta score corresponding to that model. In addition, the
model scores are summarized in table format in the score.sc file. The two
main scoring terms to consider are:

• total_score: the total score is reflective of the entire protein-ligand
complex and is good as an overall model assessment

16

Rosetta ligand docking tutorial

• interface_delta_X: the interface score is the difference between the
bound protein-ligand complex and the unbound protein-ligand. Interface
score is useful for analyzing ligand effects and for comparing different
complexes.

5.2.7 Step 8: Transform_accept_ratio

One other metric to keep an eye on is the Transform_accept_ratio. This is
the fraction of Monte Carlo moves that were accepted during the low resolution
Transform grid search. If this number is zero or very low, the search space may
be too restrictive to allow for proper sampling.

5.2.8 STEP 9: RMSD

In benchmarking examples when we have a correct crystal structure, lig

and_rms_no_super_X will give us the RMSD difference between our model
ligand and the crystal structure ligand given in crystal_complex.pdb.
This is an important metric when benchmarking how well your models correlate
to reality. When the crystal structure is unknown, we can also calculate model
RMSDs using the best scoring structure as the “true answer”.

5.2.9 Step 10: Use PyMOL for visual comparison

Use PyMOL to visually compare your best-scoring model and worse-scoring
model with the crystal structure provided in crystal_complex.pdb.
The “All->Action->preset->ligand sites->cartoon” setting in PyMOL is ideal
for visualizing interfaces.
What interactions were successfully predicted by Rosetta?

5.2.10 Step 11: Quick visusalization script

The visualize_ligand.py script in the scripts directory is a useful shortcut
to doing quick visualizations of protein-ligand interfaces.
It takes in a PDB and generates a .pse PyMOL session by applying common
visualization settings. The example below shows the command lines for using
this script on the 0001 model but you are free to try it on any one (or more!)
of your models.
This can to be done on the Docker Container side if the pymol Python package
was installed (see above.) Therefore this is a step that cannot be run “as is”
on macOS.

17

Rosetta ligand docking tutorial

Note that the tutorial file name is 3PBL_A_ETQ_0001.pdb but our result files do
not have the _A_ portion.
Run this command from the Docker Container Terminal, assuming we are within
the ligand_docking directory which in turn contains the scripts directory:

scripts/visualize_ligand.py 3PBL_ETQ_0001.pdb

On the Mac side, double click the resulting 3PBL_ETQ_0001.pse file which will
open with PyMOL.

5.3 Analysis
Since we generated such a small number of structures, it is unlikely to capture
all the possible binding modes that you would expect to encounter in an actual
docking run. In the out directory, there are 50 models pre-generated using the
exact same protocol.
We will look at an example of how we can analyze this dataset.

5.4 Analysis step 1:
cd into the out directory in your ligand_docking:

cd out

5.5 Analysis step 2:
Directory out also contains additional files: score.sc, score_vs_rmsd.csv,
rmsds_to_best_model.data, and several .png image files.

• score.sc: summary score file for the 50 structures as outputted by
Rosetta.

• score_vs_rmsd.csv: a comma separated file with the filename in the first
column, total_score for the complex in the second column, the interface
score in the third column, and ligand RMSD to the native structure in
the fourth column.

This file was tabulated using the extract_scores.bash script and the score.sc

file as input.

18

Rosetta ligand docking tutorial

This is a very specific script made for extracting useful information in ligand
docking experiments. However, the script can be easily customized for ex-
tracting other information from Rosetta score files. If you have any in-depth
questions about how it works or how to modify it, feel free to ask.
To see how it in action, run:

assumes we are in the out directory

../scripts/extract_scores.bash score.sc

• rmsds_to_best_model.data: a space separated file containing RMSD
comparisons with the best scoring model (not crystal structure!) for all
PDB files.

A more detailed discussion of this file will come further down in the tutorial.
This file has the filename in the first column, an all heavy-atom RMSD in
the second column, a ligand only RMSD without superimposition in the third
column, a ligand only RMSD with superimposition in the fourth column, and
heavy atom RMSDs of side-chains around the ligand in the fifth column.
This file is generated using the calculate_ligand_rmsd.py script. It uses py

mol to compare PDB structures containing the same residues and ligand atoms.
(As such this command does not run by default on macOS.)
It’s a quick way of calculate ligand RMSDs of Rosetta models.
To see how this works, let’s try it on the five models we generated in the previous
steps:
STOP

The script calculate_ligand_rmsd.py on lines 83 and 221 using the print

statement from Python version 2 that will cause an error. These 2 lines need to
be converted to the print() function of Python 3. This can be done with the
following stream editor (sed) regular expression script which edit and overwrite
the original script:

Assumes we are still in out directory

sed -i -r 's/ˆ(\s*print)\s+(.*)/\1(\2)/g' ../scripts/calculate_ligand_rmsd.py

Note: if there is an error such as sed: couldn’t open temporary file: Permission
denied remove -i and create a new file with e.g. .py3 extension:

Assumes we are still in out directory

sed -r 's/ˆ(\s*print)\s+(.*)/\1(\2)/g' ../scripts/calculate_ligand_rmsd.py > ../scripts/calculate_ligand_rmsd.py3

make it executable

chmod a+x ../scripts/calculate_ligand_rmsd.py3

19

https://en.wikipedia.org/wiki/Regular_expression

Rosetta ligand docking tutorial

(Credit: Copilot converted the vi editor command found on StackOverflow.)
See the Appendix of my Blog for details.
Back to the Tutorial material:

Change directory up one level

cd ../

Run the script with .py or .py3 ending (see above)

./scripts/calculate_ligand_rmsd.py -n 3PBL_ETQ_0003.pdb -c X -a 7 -o rmsds_to_best_model.data *_000*.pdb

Run the script with -h to obtain relevant information that will detail the chosen
options. For example -c X is for choosing chain X.
This command compares all five of your models to the one after the -n option.
Your best scoring model may not be the one labelled 0003 so feel free to
customize that option. The -c tells the script that the ligand is denoted as
chain X. The -a tells the script to use 7 angstroms as the cutoff sphere for
side-chain RMSDs. The -o option is the output file name. Lastly, we provided
a list of PDBs using the wildcard selection.
The script produces the rmsd_to_best_model.data file that you can open in
any text editor. Feel free to ask questions if you like to discuss more of how to
customize this script for your own applications.
Now let’s go back to the pre-generated model directory:

cd out

• PNG files: plots made from the various data file mentioned above.
Python and the matplotlib package was used here but you are free
to use any plotting software you prefer.

5.6 Analysis step 3: RMSD plots
In this case, we have the correct answer based on the crystal structure so we
can examine a score vs rmsd plot to see if the better scoring models are indeed
closer to the native ligand binding mode.
Open up the plot with the following command:
Use macOS command below or choose graphically.

gthumb score_vs_crystal_rmsd_plot.png <- tutorial orginal command

cd to out directory

cd $ROSETTA3_DEMOS/tutorials/ligand_docking/out

20

https://stackoverflow.com/questions/22590183/regex-vim-for-print-to-print-for-python2-to-python3
https://bcrf.biochem.wisc.edu/2024/05/17/rosetta-ligand-docking-help-with-docker/

Rosetta ligand docking tutorial

Open file

open -a /System/Applications/Preview.app score_vs_crystal_rmsd_plot.png

On the X-axis you will see the ligand RMSD to the ligand in the crystal structure.
On the Y-axis you will see the interface delta score in Rosetta Energy Units.
Notice the general correlation between RMSD and Rosetta Score, with a large
cluster of highly accurate and good scoring models in the lower left hand corner.

5.6.1 Analysis step 4: Best model

In practical applications, we would not have the crystal structure for comparison.
However, we can treat the best scoring model as the correct model and see if
we generate a similar funnel.
This is one application of how we might use the calculate_ligand_rmsd.py

script discussed earlier.
Once we identify a desired “best model”, we can run the script to generate the
rmsds_to_best_model.data.
Some scripting may be required to put the information from multiple files to-
gether, depending on which software package you choose to graph with. To
identify the best scoring model for this example, I selected the top 200 models
based on the best overall score and then identified the best model by interface
score.
The best model for these plots is 3PBL_A_ETQ_0347.pdb. Open up the first plot
with:

gthumb score_vs_low_rmsd_plot.png <- tutorial original command

macOS:

open -a /System/Applications/Preview.app score_vs_low_rmsd_plot.png

Again, we see a cluster of good scoring models near the best scoring model with
a general downward trend further away. We can zoom in on the cluster in the
lower left hand corner to get an even better picture.

gthumb score_vs_low_rmsd_zoom_plot.png <- tutorial original command

macOS:

open -a /System/Applications/Preview.app score_vs_low_rmsd_zoom_plot.png

We see the same overall trend in this cluster, suggesting that the top scoring
models in this run are likely to be good predictors of the true ligand binding
position.

21

Rosetta ligand docking tutorial

5.6.2 Analysis step 5: structure visualizations

Finally let’s look at some structures. To sort the CSV file by interface score
and take the top twenty, type:

sort -t, -nk3 score_vs_rmsd.csv | head -n 20

Note: -t, defines the column/field delimiter as comma (since we are using a
CSV file.) -n sorts numerically, on the 3rd column: -k3

These should all be very low RMSD models. To compare a certain structure to
the native in PyMOL, use:

Do not run

pymol 3PBL_ETQ_0001.pdb ../crystal_complex.pdb <- tutorial original command

Open PyMOL on your Mac with open -a command shown previously.
Don’t forget the ligand site preset mode for visualizing interfaces or use the
visualize_ligand.py script to generate PyMOL session .pse files. If you like,
we can also look at some of the poor scoring models to see exactly what went
wrong. To find the top 20 worse models by interface score:

sort -t, -nk3 score_vs_rmsd.csv | tail -n 20

3PBL_A_ETQ_0033.pdb (or 3PBL_ETQ_0033.pdb) should come up as a poor scor-
ing, high RMSD structure. When we open it up in PyMOL, we can see that the
ligand binding direction is different from the native position. This can happen
when there is an extended binding pocket but in this case, the Rosetta score
was able to discern the difference between these models.

Do not run

pymol 3PBL_A_ETQ_0033.pdb ../crystal_complex.pdb

Open PyMOL on your Mac with open -a command shown previously.

5.7 Notes on biding pockets
Some notes on binding pockets and adjusting the sampling space of the ligand
Q: My protein has a quite large cavity and a small ligand (not bigger than
a Leucine). In the XML file these are the standard parameters: <Trans

form name="transform" chain="X" box_size="7.0" move_distance="0.2"

angle="20" cycles="500" repeats="1" temperature="5"/>. Why is the

22

Rosetta ligand docking tutorial

move_distance and the angle so small? Would it make sense to increase the
box_size to 12, the move_distance to 5 and the angle to 360 to sample more
space the ligand is allowed to move in?
A: The Transform algorithm is a Monte Carlo procedure, and the
move_distance and angle are the size for the individual steps in the MC
protocol, not the maximum extent of the movement. They’re also the sd of a
gaussian, so you’re not necessarily limited to the given amount in any given
step. That said, if you’re increasing the size of the pocket, it might make
sense to bump the move size up in proportion. (So for a box size of 12, a
move_distance of 0.25 to 0.5 or so might be appropriate.)
If you’re exploring the pocket, I’d also suggest setting the initial_perturb

option. By default Transform will always start with the input position. If you
add the initial_perturb=X.X option, then it will first randomize the starting
location of the ligand within an X.X Angstrom sphere from the starting position,
as well as randomizing the orientation. – And a new random position/orientation
will be taken for each nstruct, so you can sample the pocket even if your MC
moves aren’t sufficient to wander across it. Also, if you’re increasing the size
of the pocket, you’re likely going to need to increase the size of the Grid such
that it will cover the maximal extent of ligand travel. If it doesn’t, Transform
will reject any ligand which accidentally falls outside the grid.
Q: Does the initial_perturb option also randomize the angles? Because
there is another option initial_angle_perturb in the TransformMover.
A: Yes, by default setting initial_perturb will completely randomize the an-
gles (ligand orientation) - the initial_angle_perturb is there if you want to
reduce the angle perturbation. (e.g. if you’re refining the orientation)
Congratulations, you have performed RosettaLigand docking study! Now use
your docked models to generate hypotheses and test them in the wet lab!

6 Appendix
The out directory (see above) PNG plots of comparison of models with the
crystal structure. There is no code explaining the creation of the plots and the
text suggests that the plots were derived from “top 200 models” i.e. more than
the 50 structures included in the directory. However, we could still plot results
from these 50 structures with either R or python.
The following code was created by the Microsoft Copilot AI and is minimally
edited for the name and location of the input file(s). It was tested and works!

23

https://copilot.microsoft.com/

Rosetta ligand docking tutorial

6.1 R code
Assumes ggpplot2 has been installed, or install with command at the R console:
install.packages("ggplot2").
Make sure that you are in the directory containing the desired CSV file, or
pointing to the correct directory (here ./out). The size and color of the points
within the plot was also added afterwards.
The plot is shown graphically but can be saved manually.

Read the data from a text file (assuming the file is named 'data.txt')

data <- read.csv("out/score_vs_rmsd.csv", header=FALSE)

Extract the 3rd and 4th columns

x <- data$V3

y <- data$V4

Load the ggplot2 library for plotting

library(ggplot2)

Create a scatter plot

ggplot(data, aes(x=x, y=y)) +

geom_point(colour = "red", size = 3) +

theme_minimal() +

labs(title="Scatter Plot of 3rd and 4th Columns",

x="3rd Column",

y="4th Column")

6.2 Python 3 code
Assumes pandas and matplotlib are installed (e.g. using pip with the more
modern command as: python -m pip install pandas matplotlib).
In python the first item is o hence 3rd and 4th columns are columns 2 and 3
(unlike in R.)
The script will export a PNG file called plot.png

import pandas as pd

import matplotlib.pyplot as plt

Read the data from a text file (assuming the file is named 'data.txt')

data = pd.read_csv('./out/score_vs_rmsd.csv', sep=',', header=None)

24

https://ggplot2.tidyverse.org/

Rosetta ligand docking tutorial

0

2

4

6

−12 −8 −4 0
3rd Column

4t
h

C
ol

um
n

Scatter Plot of 3rd and 4th Columns

Figure 1: ggplot of score *vs* rmsd

Extract the 3rd and 4th columns

x = data.iloc[:, 2]

y = data.iloc[:, 3]

Create a scatter plot

plt.scatter(x, y)

plt.title('Scatter Plot of 3rd and 4th Columns')

plt.xlabel('3rd Column')

plt.ylabel('4th Column')

plt.grid(True)

Save the plot to a PNG file

plt.savefig('plot.png')

25

Rosetta ligand docking tutorial

Figure 2: Python plot of score *vs* rmsd.csv

26

	1 Rewrite Summary
	2 Rosetta
	3 Preparations
	3.1 Rosetta preparations
	3.2 Getting Started

	4 Following the original tutorial
	5 Modified Tutorial
	5.1 Ligand Docking with a G-Protein Coupled Receptor
	5.2 Step 1
	5.3 Analysis
	5.4 Analysis step 1:
	5.5 Analysis step 2:
	5.6 Analysis step 3: RMSD plots
	5.7 Notes on biding pockets

	6 Appendix
	6.1 R code
	6.2 Python 3 code

