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Abstract

This is a “rewrite” of the Rosetta ligand_docking_tutorial.md with comments
on how to combine Docker Container and macOS.
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1 Rewrite Summary
This is a “rewrite” of the Rosetta ligand_docking_tutorial.md file in R-markdown with
comments on how to combine Docker Container and macOS. (There are no Windows bina-
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ries.)

Summary: Combine software and scripts on Docker and local macOS computer (Intel
amd64 or arm64 Silicon Chip M series) to follow successfully the Rosetta tutorial Ligand
Docking with a G-Protein Coupled Receptor. This method will allow access to the native
OS speed while fulfilling all preparatory and exploratory steps that fail or are too complex
to set-up on the local computer.

2 Rosetta
The Rosetta software suite includes algorithms for computational modeling and
analysis of protein structures. [. . . ] including de novo protein design, enzyme
design, ligand docking, and structure prediction of biological macromolecules and
macromolecular complexes.

The software is rather complex and it can be difficult to “make things work” considering the
breadth of options for algorithms or hardware and operating system support. This method
will allow to access the native OS speed while fulfilling all preparatory and exploratory steps.

This post is an attempt to help users that want to use the software on their native OS
(macOS) but since some functionality built-in the tutorials assumes a Linux OS, some of the
steps are in fact easier handled on the Linux side thanks to Docker.

3 Preparations
These instructions should benefit macOS users primarily as there are no Windows binaries
available. Windows users should use the WSL2 method to install Linux under Windows.

Users should be somewhat familiar with bash command line (see e.g. my Survival Command
Line tutorial) and have the Docker Desktop software installed (see e.g. my tutorial Docker
– Beginner for Biologists.)

The Rosetta Docker image can be downloaded from Terminal with the command below,
assuming that Docker is already installed:
docker pull rosettacommons/rosetta:latest

While the purpose of the Docker image is to provide access to all the Linux compiled binaries,
we will take advantage of some of the Linux functionality as well as the installed Python
within.

3.1 Rosetta preparations
Rosetta is freely available for academic and non-commercial purposes, under license. The
software can be downloaded from the links provided on the Download page.
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In order to compute the docking computation “natively” (for faster results) on the local
computer users should download the newest “release”, e.g. from the Academic download
page.

For this post I used Rosetta 3.14 for M1 (Silicon Chip “M1 binaries”, 13Gb) Macintosh,
Intel-based Mac users should download the “Mac binaries” (14Gb).

Note: Unarchiving the file will require about 45 Gb of disk space but will contain
the material for all tutorials and demos.

3.2 Getting Started
We will use 2 Terminal sessions: one to navigate within the Macintosh natively. The other
to run a Docker container that will be activated in a way so that both Terminal sessions will
share the same directory area on the local computer.

When Terminal is running you can choose a different color for each shell using the Shell >
New Window menu cascade. (Basic is white background.)

Here we’ll use a blue background for when we are looking within the Docker Container, and
a pale yellow when we are on the macOS side:
echo pale yellow means macOS side

A pale yellow Terminal can be obtained with the menu cascade:
Shell > New Window > Man Page
echo light blue means we are running from inside the Linux container

A blue background (with white text) can be obtained with the menu cascade:
Shell > New Window > Ocean

Note: the colored background will only be visible in the HTML versions. (PDF
versions are better for printing.)

3.2.1 Environment variables on macOS Terminal

On the Macintosh side it will be useful to create environment variables as suggested in the
Rosetta Commons section How To Read These Tutorials. Assuming that the binaries are
found within the Downloads directory, we can keep that location and its default name.

For the M1 series the unarchived directory was called rosetta.binary.m1.release-371
and the following variables below were created. I replaced my username by $USER so that
these commands become generic and can be copied, with the caveat that the binary name
might be different (change accordingly!)

Open a Mac Terminal (/Applications/Utilities/Terminal.app) and paste the (edited)
commands:
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export ROSETTA3=/Users/$USER/Downloads/rosetta.binary.m1.release-371/main/source
export ROSETTA3_DB=/Users/$USER/Downloads/rosetta.binary.m1.release-371/main/database
export ROSETTA_TOOLS=/Users/$USER/Downloads/rosetta.binary.m1.release-371/main/tools
export ROSETTA3_DEMOS=/Users/$USER/Downloads/rosetta.binary.m1.release-371/main/demos

These commands can me made “permanent” by including them within the .zshrc or .bashrc
files for the zsh or bash shell choice respectively. (You can know your shell with command
echo $SHELL)

3.2.2 Start the Docker container

Open a new Terminal and select a different color to better distinguish this Terminal with
the Top menu cascade: Shell > New Window > Ocean

Navigate the the top level of the release directory within the main directory. For me it would
be as follows. . .
cd /Users/$USER/Downloads/rosetta.binary.m1.release-371/main/

Note: the container is not yet running, hence this command is printed with a pale yellow
background i.e. we are still on the macOS side.

Verify that this was successful with pwd and then continue.

Launch the Docker container: The -v option lets us share the current directory (i.e. main,
with the container, mapping it as /data within the container, and making it the default
working directory with the -w option.

This command is given to macOS. Once we are running, we’ll be in the “blue” session i.e.
within the Linux OS.
docker run -it --rm -v ${PWD}:/data -w /data rosettacommons/rosetta

(Note: on a Silicon M series Mac Docker will complain about the “platform” but this can
be ignored.)

A listing of the files and directories should reveal the same content as the main directory.
We are now within the Linux container and therefore we’ll use blue background.

The shell prompt will be shown as # preceded by the working directory as /data # which is
omitted for easier copy/paste of the commands.
ls -F

The result should be similar to the following:
CITING_ROSETTA.md README.md rosetta_scripts_scripts/
CLA.md database/ source/
CONTRIBUTING.md demos/ tests/
LICENSE.md documentation/ tools/
PyRosetta.notebooks/ pyrosetta_scripts/
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We can check a couple more things: the shell as well as the operating system:
echo $SHELL

/bin/bash

cat /etc/os-release

Will show that we are running Ubuntu:
NAME="Ubuntu"
VERSION="20.04.6 LTS (Focal Fossa)"
ID=ubuntu
ID_LIKE=debian
PRETTY_NAME="Ubuntu 20.04.6 LTS"
VERSION_ID="20.04"
HOME_URL="https://www.ubuntu.com/"
SUPPORT_URL="https://help.ubuntu.com/"
BUG_REPORT_URL="https://bugs.launchpad.net/ubuntu/"
PRIVACY_POLICY_URL="https://www.ubuntu.com/legal/terms-and-policies/privacy-policy"
VERSION_CODENAME=focal
UBUNTU_CODENAME=focal

Within the Docker container we don’t really need the ROSETTA environment variables as all
paths can start with /data to be “absolute” (i.e. non ambiguous.)

3.2.3 Docker Container additional set-up

The tutorial assumes that the user is sitting in front of the fully functional Linux computer,
including graphical interface, with all ancillary software needed for such a computer already
installed. However, within the container a few important utilities are missing, so we need to
add them now.

The command whoami will confirm that we are running as root as is indicated by the #
prompt. This means that we can install any software we need. The first command provides
Ubuntu with information needed to know where to download the software we ask to install.
On the second line we ask to install (yes by default with -y) 3 software

Issue the following commands after the # prompt:
apt-get update
apt-get install -y wget nano pymol

With these installed we can run all of the commands in the tutorial. Adding the pymol
Python module will allow the creation of PyMOL .pse files as well as a specific python
script, as described in the tutorial, from the Docker Container Terminal.
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4 Following the original tutorial
This document is a modification of the original tutorial Ligand Docking with a G-Protein
Coupled Receptor with added information. A short version is available in the Blog entry
about this specific tutorial. This document contains all original writing.

From this point below we’ll start using the original tutorial with the following modifications:

1. Both macOS and Linux (Container) commands will be shown if it is possible to run
on either side.

2. On macOS the $ROSETTA environment variables will be used. On Linux we can simply
use /data. The replace <path-to-Rosetta> in the original commands.

3. We’ll continue coloring the command bacground to help indicate the OS used.

4. The section numbering will mimic as closely as possible the numbering of the original
document.

5 Modified Tutorial
From this point the text is mostly from the original tutorial, with added options to run from
macOS or Linux as well as additional explanations on the commands used.

KEYWORDS: LIGANDS DOCKING

Bold text means that these files and/or this information is provided.

Italicized text means that this material will NOT be conducted during the workshop

fixed width text means you should type the command into your terminal (after > sign)

If you want to try making files that already exist (e.g., input files), write them to a different
directory! (mkdir my_dir)

In addition to following this sample docking problem, the user is encouraged to review the
Rosetta user guide including the section on ligand-centric movers for use with RosettaScripts.

https://www.rosettacommons.org/docs/latest/

5.1 Ligand Docking with a G-Protein Coupled Receptor
The experimental data for this tutorial is derived from: Chien, E. Y. T. et al. Struc-
ture of the human dopamine D3 receptor in complex with a D2/D3 selective
antagonist. Science 330, 1091-5 (2010).

This particular D3/eticlopride protein-ligand complex was used as a target in the GPCR
Dock 2010 assessment, the results of which are discussed here: Kufareva, I. et al. Status
of GPCR modeling and docking as reflected by community-wide GPCR Dock
2010 assessment. Structure 19, 1108-1126 (2011).
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If you are interested in more information on the performance of Rosetta in modeling and
docking D3/GPCRs in general, please consult Nguyen, E. D. et al. Assessment and
challenges of ligand docking into comparative models of g-protein coupled re-
ceptors. PLoS One 8, (2013).

Dopamine is an essential neurotransmitter that exhibits its effects through five subtypes of
dopamine receptors, important members of class A G-protein coupled receptors (GPCRs).
Both subtype two (D2R) and subtype three (D3R) function via inhibition of adenyl cyclase,
and modulation of these two receptors has clinical applications in treating schizophrenia.
However, the high degree of binding site conservation between D2R and D3R makes it
difficult to generate pharmacological compounds that selectively bind one or the other, and
thereby reducing side effects.

Today, we will examine how eticlopride, a D2R/D3R antagonist, binds to human D3R.

A crystal structure is available for the D3R and eticlopride complex (PDB: 3PBL), but
for the purposes of this exercise, we will model the protein-ligand interactions anyways. In
reality, you may be using a comparative model rather than a crystal structure for the protein
receptor, but the steps in this tutorial will apply to both.

For this exercise, we’ll be doing our pre-docking preparations in the protein_prep and
ligand_prep folders. The modeling will be done in the docking folder. The scripts folder
contains helpful ligand docking specific scripts that we’ll be using during this tutorial (you
should never be copying files to or from this folder). All necessary files are also prepared in
the answers directory in case you get stuck.

5.2 Step 1
Go to the desired location:

Navigate to the ligand_docking directory where you will find the ligand_prep,
protein_prep, docking, and answers folders.

On macOS Terminal:
# macOS
cd $ROSETTA3_DEMOS/tutorials/ligand_docking/protein_prep

On Container Terminal:
#Container
cd /data/demos/tutorials/ligand_docking/protein_prep

5.2.1 Step 2: prepare human dopamine 3 receptor

Prepare a human dopamine 3 receptor structure. We will do this by obtaining the crystal
structure (3PBL) and removing the excess information.
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The first step has to be accomplished on the Docker Container side as the called python script
clean_pdb.py calls on wget to download a PDB file but wget is not installed on macOS
by default. The clean_pdb.py script then calls on zcat to unarchive the file. However, on
macOS this software behaves differently and expect a file ending with .Z and cause a “file
not found” error. Thus it is best to accomplish this task on the Container side, but since we
are sharing the directories these will “magically” appear on the macOS side as well!

2.1. Change into the protein_prep directory with the cd command:

We can verify that we are already within the protein_prep directory from the last command
above.
pwd

The original Tutorial suggested to download the PDB file, but the clean_pdb.py script will
download it anyway so it is not really necessary.

2.2. Download 3BLP (pdb format) from http://www.rcsb.org/pdb/home/home.
do into the protein_prep directory.

The clean_pdb.py script will allow you to strip the PDB of information other than the
desired protein coordinates. The ‘A’ option tells the script to obtain chain A only. The full
crystal structure consists of two monomers as a crystallization artifact.

On the Container Terminal type:
/data/tools/protein_tools/scripts/clean_pdb.py 3PBL.pdb A

2.3. There are two output files from clean_pdb.py: 3PBL_A.pdb contains a single chain of
the protein structure and 3PBL_A.fasta contains the corresponding sequence. 3PBL_A.pdb
is the receptor structure we will be using for docking, copy this into the docking directory.
cp 3PBL_A.pdb ../docking

Note: This structure has a T4-lysozyme domain instead of the third cytoplasmic loop as a
stabilizing feature for crystallography. Normally, we would truncate this lysozyme segment
and perform loop modeling as discussed in the comparative modeling tutorial to regenerate
the intracellular loop. However in the interest of time, we will use the lysozyme containing
structure as the eticlopride binding site is far from the intracellular domain.

5.2.2 Step 3: prepare the ligand files

Next, we will prepare the ligand files by generating parameters using a eticlopride confor-
mational library.

For more information about the ligand preparation, check ligand preparation tutroial| pre-
pare_ligand.

3.1. cd into the directory named ligand_prep
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cd ../ligand_prep

3.2.In the directory, you will find a pair of already prepared files: eticlopride.sdf and
eticlopride_conformers.sdf

3.2.1. eticlopride.sdf: This contains the eticlopride structure found in the 3PBL protein
complex.

Note: You can also find the ligand file from this particular PDB structure by going to the
3PBL page and scrolling down to the “Ligand Chemical Component” section. From there,
you can click “Download” under the ETQ identifier.

3.2.2. eticlopride_conformers.sdf: This is a library of conformations for eticlopride
generated outside of Rosetta. The downloaded ligand .sdf file only contains conformations
found in the PDB so we must expand the library to properly sample the conformational
space. We also need to add hydrogens since they are not resolved in the crystal structure.
Feel free to open the file in PyMOL and use the arrow keys to scroll through the different
conformations:
# Do not run
pymol eticlopride_conformers.sdf

The command pymol eticlopride_conformers.sdf assumes a Linux computer with a full
Graphical interface and will not work on macOS or within the Docker Container as it is
running as “Text-only.”

To open PyMOL from command line on a Mac use the command:
open -a /Applications/PyMOL.app

Then slide the file eticlopride_conformers.sdf onto PyMOL with your mouse (using the
file name as argument does not currently open it on macOS.) If you are not sure where the
file is on your Mac, the following 2 commands will open the folder where it’s located:
# Go to location:
cd ROSETTA3_DEMOS/tutorials/ligand_docking/ligand_prep

# Open current folder represented by a dot: .
open .

This particular conformational library was generated using the Meiler lab’s BioChemical-
Library (BCL). The BCL is a suite of tools for protein modeling, small molecule cal-
culations, and machine learning. If you’re interested in licensing the BCL, please visit
http://www.meilerlab.org/bclcommons or ask one of the instructors.

Other methods of ligand conformer generation include OpenEye’s MOE software, CSD Mer-
cury software (CSD Conformer Generator) and web-servers such as Frog 2.1 or DG-AMMOS.
The generated libraries will differ depending on the chosen method.

3.2.3. Generate a .params file and associated PDB conformations with Rosetta atom
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types for eticlopride. A .params file is necessary for ligand docking because Rosetta does
not have records for custom small molecules in its database.

This step is done using the script molfile_to_params.py.

Note: This command can be run from either Terminal. . . However, the first line of the script
reads: #!/usr/bin/env python which assumes that the computer environment has a python
path defined. On my Mac it is currently defined as python3 and therefore it complains with
env: python: No such file or directory. This is fixed easily by adding python3 in
front of the actual command on the macOS side.

You can run this step with either of the following commands. The first one could also
work on Mac if python is defined as such. For the Mac Terminal option I make use of the
environment variable $ROSETTA3. You can use the option -h first as suggested in the tutorial
to understand the meaning of the command:

Option 1 (In Container):
# Show help
/data/source/scripts/python/public/molfile_to_params.py -h

# Run
/data/source/scripts/python/public/molfile_to_params.py -n ETQ -p ETQ --conformers-in-one-file eticlopride_conformers.sdf

Option 2 (Mac Terminal):
# Show help:
python3 $ROSETTA3/scripts/python/public/molfile_to_params.py

# Run
python3 $ROSETTA3/scripts/python/public/molfile_to_params.py -n ETQ -p ETQ --conformers-in-one-file eticlopride_conformers.sdf

Note: You may encounter a warning about the number of atoms in the residue. This is okay
as Rosetta is merely telling you that the ligand has more atoms than an amino acid.

File ETQ.params contains the necessary information for Rosetta to process the ligand,
ETQ.pdb contains the first conformation, and ETQ_conformers.pdb contains the rest of the
conformational library.

Note: The tutorial assumes that we are within the ligand_prep/ directory, but also calls the
sdf file with ligand_prep/eticlopride_conformers.sdf which will cause an error since
we are already within that directory. Thus the directory name has been removed from the
above commands.

3.2.4. If you use the tail command on ETQ.params, you will notice the PDB_ROTAMERS
property line that tells Rosetta where to find the conformational library. Make sure this line
has ETQ_conformers.pdb as the property.
tail ETQ.params
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Note: The same command could be given on the macOS side as well.

3.2.5. Now that we have the necessary files for ligand docking, let’s copy them over the
ligand_docking directory.
cp ETQ* ../

Note: The same command could be given on the macOS side as well. Remember that bot
Terminal are “looking within” the exact same directory.

5.2.3 Step 4: Final preparations in the docking directory

Now we want to make our final preparations in the docking directory.

4.1. Switch over to our ligand_docking directory
cd ../

4.2. Open up our prepared receptor and ligand structures to examine the complex

# Do not run
pymol 3PBL_A.pdb ETQ.pdb

The command pymol 3PBL_A.pdb ETQ.pdb invites to explore the complex graphically. Use
the methods described previously for graphical exploration.

(Original NOTE: if you cannot open pymol from the command line, you may need to set up
your bash environment.)

Now make a pdb file by concatenating your protein and ligand, running this script:
cp protein_prep/3PBL_A.pdb .
cat 3PBL_A.pdb ETQ.pdb > 3PBL_ETQ.pdb

If you don’t have these files, copy them from the answers directory:
cp answers/docking/3PBL_ETQ.pdb .

4.3. Tip: ‘All->Action->preset->ligand sites->cartoon’ will help you visualize the pro-
tein/ligand interface. The All button is denoted by a single letter “A” in Pymol GUI.

Since this is a rudimentary exercise, we will start with the ligand in the protein binding site.

In practical application, we may need to define a starting point with the StartFrom mover
or to manually place the ligand into an approximate region using PyMOL.

4.4. Once you close PyMOL, make sure Rosetta has these four necessary input struc-
ture/parameter files in the ligand_docking tutorial directory. If you are missing any of
these, copy them from ../answers/docking/

• 3PBL_A.pdb: a single chain of the protein receptor structure
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• ETQ.pdb: a default starting conformation for eticlopride

• ETQ_conformers.pdb: A pdb file containing all conformers generated from the
eticlopride library.

• ETQ.params: a Rosetta parameter file that provides the necessary properties for
Rosetta to treat eticlopride

5.2.4 Step 5: Rosetta wrapper and helpers

Next we need to make sure we have the proper RosettaScripts|rosetta_scripting XML file,
input options file, and crystal complex (correct answer). These files are provided to you as
dock.xml, options.txt, and crystal_complex.pdb. Copy these to your ligand_docking
directory:
# Remember that . is the current dir
cp docking/dock.xml .
cp docking/options .
cp docking/crystal_complex.pdb .

• dock.xml - This is the RosettaScripts XML file that tells Rosetta the type of
sampling and scoring to do. It defines the scoring function and provides parame-
ters for both low-resolution coarse sampling and high-resolution Monte Carlo sampling.

• options.txt - This is the options file that tells Rosetta where to locate our input
PDB structures and ligand parameters. It also directs Rosetta to the proper XML file.

• crystal_complex.pdb - This is the D3-eticlopride complex from the PDB. It will serve
as the correct answer in our case allowing us to make comparisons between our models
and actual structures.

5.2.5 Step 6: Run the docking study

Note: This is the point where using macOS binaries would prove valuable for larger compu-
tations and when it is useful to have the macOS binaries installed. For large projects the
Mac binaries will run faster than running those within the Docker Container by emulation
which would mean a double emulation on an M Series Silicon Mac: one to convert the Linux
code, and the second to convert from Intel (amd64) to Silicon Chip (arm64), which is done
seemlesly for Mac users by a utility aptly called “Rosetta2” but has not connection with the
Rosetta we are using for protein or docking computations!

IMPORTANT NOTE : The name of the binary will differ depending on the operating system.

Run the docking study (This should take a few minutes at most, as we’re using a reduced
number of output structures):

The command in the original tutorial assumes a standard installation, with binary:
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$> $ROSETTA3/bin/rosetta_scripts.linuxgccrelease @options

However, within the Docker Container the binaries have a different naming convention. The
binaries within the container are within /usr/local/bin and the specific one to call for this
section is named:
rosetta_scripts.cxx11threadserialization.linuxgccrelease

On the Mac it will be:
$ROSETTA3/bin/rosetta_scripts.static.macosclangrelease

To run the docking use the appropriate binary, followed by @options

On the Mac it would be:
$ROSETTA3/bin/rosetta_scripts.static.macosclangrelease @options

5.2.6 Step 7: Rosetta models

The Rosetta models are saved with the prefix 3PBL_ETQ_ followed by a four digit identifier
such as 3PBL_ETQ_0001.pdb. Each model PDB contains the coordinates and Rosetta score
corresponding to that model. In addition, the model scores are summarized in table format
in the score.sc file. The two main scoring terms to consider are:

• total_score: the total score is reflective of the entire protein-ligand complex and is
good as an overall model assessment

• interface_delta_X: the interface score is the difference between the bound protein-
ligand complex and the unbound protein-ligand. Interface score is useful for analyzing
ligand effects and for comparing different complexes.

5.2.7 Step 8: Transform_accept_ratio

One other metric to keep an eye on is the Transform_accept_ratio. This is the fraction of
Monte Carlo moves that were accepted during the low resolution Transform grid search. If
this number is zero or very low, the search space may be too restrictive to allow for proper
sampling.

5.2.8 STEP 9: RMSD

In benchmarking examples when we have a correct crystal structure, ligand_rms_no_super_X
will give us the RMSD difference between our model ligand and the crystal structure ligand
given in crystal_complex.pdb.

This is an important metric when benchmarking how well your models correlate to reality.
When the crystal structure is unknown, we can also calculate model RMSDs using the best
scoring structure as the “true answer”.
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5.2.9 Step 10: Use PyMOL for visual comparison

Use PyMOL to visually compare your best-scoring model and worse-scoring model with the
crystal structure provided in crystal_complex.pdb.

The “All->Action->preset->ligand sites->cartoon” setting in PyMOL is ideal for visualizing
interfaces.

What interactions were successfully predicted by Rosetta?

5.2.10 Step 11: Quick visusalization script

The visualize_ligand.py script in the scripts directory is a useful shortcut to doing
quick visualizations of protein-ligand interfaces.

It takes in a PDB and generates a .pse PyMOL session by applying common visualization
settings. The example below shows the command lines for using this script on the 0001
model but you are free to try it on any one (or more!) of your models.

This can to be done on the Docker Container side if the pymol Python package was installed
(see above.) Therefore this is a step that cannot be run “as is” on macOS.

Note that the tutorial file name is 3PBL_A_ETQ_0001.pdb but our result files do not have
the _A_ portion.

Run this command from the Docker Container Terminal, assuming we are within the
ligand_docking directory which in turn contains the scripts directory:
scripts/visualize_ligand.py 3PBL_ETQ_0001.pdb

On the Mac side, double click the resulting 3PBL_ETQ_0001.pse file which will open with
PyMOL.

5.3 Analysis
Since we generated such a small number of structures, it is unlikely to capture all the possible
binding modes that you would expect to encounter in an actual docking run. In the out
directory, there are 50 models pre-generated using the exact same protocol.

We will look at an example of how we can analyze this dataset.

5.4 Analysis step 1:
cd into the out directory in your ligand_docking:
cd out

5.5 Analysis step 2:
Directory out also contains additional files: score.sc, score_vs_rmsd.csv, rmsds_to_best_model.data,
and several .png image files.
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• score.sc: summary score file for the 50 structures as outputted by Rosetta.

• score_vs_rmsd.csv: a comma separated file with the filename in the first column,
total_score for the complex in the second column, the interface score in the third
column, and ligand RMSD to the native structure in the fourth column.

This file was tabulated using the extract_scores.bash script and the score.sc file as
input.

This is a very specific script made for extracting useful information in ligand docking exper-
iments. However, the script can be easily customized for extracting other information from
Rosetta score files. If you have any in-depth questions about how it works or how to modify
it, feel free to ask.

To see how it in action, run:
# assumes we are in the out directory
../scripts/extract_scores.bash score.sc

• rmsds_to_best_model.data: a space separated file containing RMSD comparisons
with the best scoring model (not crystal structure!) for all PDB files.

A more detailed discussion of this file will come further down in the tutorial. This file
has the filename in the first column, an all heavy-atom RMSD in the second column, a
ligand only RMSD without superimposition in the third column, a ligand only RMSD with
superimposition in the fourth column, and heavy atom RMSDs of side-chains around the
ligand in the fifth column.

This file is generated using the calculate_ligand_rmsd.py script. It uses pymol to compare
PDB structures containing the same residues and ligand atoms. (As such this command does
not run by default on macOS.)

It’s a quick way of calculate ligand RMSDs of Rosetta models.

To see how this works, let’s try it on the five models we generated in the previous steps:

STOP

The script calculate_ligand_rmsd.py on lines 83 and 221 using the print statement from
Python version 2 that will cause an error. These 2 lines need to be converted to the print()
function of Python 3. This can be done with the following stream editor (sed) regular
expression script which edit and overwrite the original script:
# Assumes we are still in out directory
sed -i -r 's/ˆ(\s*print)\s+(.*)/\1(\2)/g' ../scripts/calculate_ligand_rmsd.py

Note: if there is an error such as sed: couldn’t open temporary file: Permission denied remove
-i and create a new file with e.g. .py3 extension:
# Assumes we are still in out directory
sed -r 's/ˆ(\s*print)\s+(.*)/\1(\2)/g' ../scripts/calculate_ligand_rmsd.py > ../scripts/calculate_ligand_rmsd.py3
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# make it executable
chmod a+x ../scripts/calculate_ligand_rmsd.py3

(Credit: Copilot converted the vi editor command found on StackOverflow.) See the Ap-
pendix of my Blog for details.

Back to the Tutorial material:
# Change directory up one level
cd ../

# Run the script with .py or .py3 ending (see above)
./scripts/calculate_ligand_rmsd.py -n 3PBL_ETQ_0003.pdb -c X -a 7 -o rmsds_to_best_model.data * _000* .pdb

Run the script with -h to obtain relevant information that will detail the chosen options.
For example -c X is for choosing chain X.

This command compares all five of your models to the one after the -n option. Your best
scoring model may not be the one labelled 0003 so feel free to customize that option. The
-c tells the script that the ligand is denoted as chain X. The -a tells the script to use 7
angstroms as the cutoff sphere for side-chain RMSDs. The -o option is the output file name.
Lastly, we provided a list of PDBs using the wildcard selection.

The script produces the rmsd_to_best_model.data file that you can open in any text editor.
Feel free to ask questions if you like to discuss more of how to customize this script for your
own applications.

Now let’s go back to the pre-generated model directory:
cd out

• PNG files: plots made from the various data file mentioned above. Python and the
matplotlib package was used here but you are free to use any plotting software you
prefer.

5.6 Analysis step 3: RMSD plots
In this case, we have the correct answer based on the crystal structure so we can examine a
score vs rmsd plot to see if the better scoring models are indeed closer to the native ligand
binding mode.

Open up the plot with the following command:

Use macOS command below or choose graphically.
# gthumb score_vs_crystal_rmsd_plot.png <- tutorial orginal command
# cd to out directory
cd $ROSETTA3_DEMOS/tutorials/ligand_docking/out
# Open file
open -a /System/Applications/Preview.app score_vs_crystal_rmsd_plot.png

16

https://stackoverflow.com/questions/22590183/regex-vim-for-print-to-print-for-python2-to-python3
https://bcrf.biochem.wisc.edu/2024/05/17/rosetta-ligand-docking-help-with-docker/
https://bcrf.biochem.wisc.edu/2024/05/17/rosetta-ligand-docking-help-with-docker/


On the X-axis you will see the ligand RMSD to the ligand in the crystal structure. On the
Y-axis you will see the interface delta score in Rosetta Energy Units. Notice the general
correlation between RMSD and Rosetta Score, with a large cluster of highly accurate and
good scoring models in the lower left hand corner.

5.6.1 Analysis step 4: Best model

In practical applications, we would not have the crystal structure for comparison. However,
we can treat the best scoring model as the correct model and see if we generate a similar
funnel.

This is one application of how we might use the calculate_ligand_rmsd.py script discussed
earlier.

Once we identify a desired “best model”, we can run the script to generate the
rmsds_to_best_model.data.

Some scripting may be required to put the information from multiple files together, depending
on which software package you choose to graph with. To identify the best scoring model
for this example, I selected the top 200 models based on the best overall score and then
identified the best model by interface score.

The best model for these plots is 3PBL_A_ETQ_0347.pdb. Open up the first plot with:
# gthumb score_vs_low_rmsd_plot.png <- tutorial original command
# macOS:
open -a /System/Applications/Preview.app score_vs_low_rmsd_plot.png

Again, we see a cluster of good scoring models near the best scoring model with a general
downward trend further away. We can zoom in on the cluster in the lower left hand corner
to get an even better picture.
# gthumb score_vs_low_rmsd_zoom_plot.png <- tutorial original command
# macOS:
open -a /System/Applications/Preview.app score_vs_low_rmsd_zoom_plot.png

We see the same overall trend in this cluster, suggesting that the top scoring models in this
run are likely to be good predictors of the true ligand binding position.

5.6.2 Analysis step 5: structure visualizations

Finally let’s look at some structures. To sort the CSV file by interface score and take the
top twenty, type:
sort -t, -nk3 score_vs_rmsd.csv | head -n 20

Note: -t, defines the column/field delimiter as comma (since we are using a CSV file.) -n
sorts numerically, on the 3rd column: -k3
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These should all be very low RMSD models. To compare a certain structure to the native
in PyMOL, use:
# Do not run
# pymol 3PBL_ETQ_0001.pdb ../crystal_complex.pdb <- tutorial original command

Open PyMOL on your Mac with open -a command shown previously.

Don’t forget the ligand site preset mode for visualizing interfaces or use the visualize_ligand.py
script to generate PyMOL session .pse files. If you like, we can also look at some of the
poor scoring models to see exactly what went wrong. To find the top 20 worse models by
interface score:
sort -t, -nk3 score_vs_rmsd.csv | tail -n 20

3PBL_A_ETQ_0033.pdb (or 3PBL_ETQ_0033.pdb) should come up as a poor scoring, high
RMSD structure. When we open it up in PyMOL, we can see that the ligand binding
direction is different from the native position. This can happen when there is an extended
binding pocket but in this case, the Rosetta score was able to discern the difference between
these models.
# Do not run
# pymol 3PBL_A_ETQ_0033.pdb ../crystal_complex.pdb

Open PyMOL on your Mac with open -a command shown previously.

5.7 Notes on biding pockets
Some notes on binding pockets and adjusting the sampling space of the ligand

Q: My protein has a quite large cavity and a small ligand (not bigger than a Leucine). In the
XML file these are the standard parameters: <Transform name="transform" chain="X"
box_size="7.0" move_distance="0.2" angle="20" cycles="500" repeats="1"
temperature="5"/>. Why is the move_distance and the angle so small? Would it
make sense to increase the box_size to 12, the move_distance to 5 and the angle to 360
to sample more space the ligand is allowed to move in?

A: The Transform algorithm is a Monte Carlo procedure, and the move_distance and angle
are the size for the individual steps in the MC protocol, not the maximum extent of the
movement. They’re also the sd of a gaussian, so you’re not necessarily limited to the given
amount in any given step. That said, if you’re increasing the size of the pocket, it might make
sense to bump the move size up in proportion. (So for a box size of 12, a move_distance of
0.25 to 0.5 or so might be appropriate.)

If you’re exploring the pocket, I’d also suggest setting the initial_perturb op-
tion. By default Transform will always start with the input position. If you add the
initial_perturb=X.X option, then it will first randomize the starting location of the
ligand within an X.X Angstrom sphere from the starting position, as well as randomizing
the orientation. – And a new random position/orientation will be taken for each nstruct,
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so you can sample the pocket even if your MC moves aren’t sufficient to wander across it.
Also, if you’re increasing the size of the pocket, you’re likely going to need to increase the
size of the Grid such that it will cover the maximal extent of ligand travel. If it doesn’t,
Transform will reject any ligand which accidentally falls outside the grid.

Q: Does the initial_perturb option also randomize the angles? Because there is another
option initial_angle_perturb in the TransformMover.

A: Yes, by default setting initial_perturb will completely randomize the angles (ligand
orientation) - the initial_angle_perturb is there if you want to reduce the angle pertur-
bation. (e.g. if you’re refining the orientation)

Congratulations, you have performed RosettaLigand docking study! Now use your docked
models to generate hypotheses and test them in the wet lab!

6 Appendix
The out directory (see above) PNG plots of comparison of models with the crystal structure.
There is no code explaining the creation of the plots and the text suggests that the plots were
derived from “top 200 models” i.e. more than the 50 structures included in the directory.
However, we could still plot results from these 50 structures with either R or python.

The following code was created by the Microsoft Copilot AI and is minimally edited for the
name and location of the input file(s). It was tested and works!

6.1 R code
Assumes ggpplot2 has been installed, or install with command at the R console:
install.packages("ggplot2").

Make sure that you are in the directory containing the desired CSV file, or pointing to the
correct directory (here ./out). The size and color of the points within the plot was also
added afterwards.

The plot is shown graphically but can be saved manually.
# Read the data from a text file (assuming the file is named 'data.txt')
data <- read.csv("out/score_vs_rmsd.csv", header=FALSE)

# Extract the 3rd and 4th columns
x <- data$V3
y <- data$V4

# Load the ggplot2 library for plotting
library(ggplot2)

# Create a scatter plot
ggplot(data, aes(x=x, y=y)) +
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geom_point(colour = "red", size = 3) +
theme_minimal() +
labs(title="Scatter Plot of 3rd and 4th Columns",

x="3rd Column",
y="4th Column")
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Figure 1: ggplot of score vs rmsd

6.2 Python 3 code
Assumes pandas and matplotlib are installed (e.g. using pip with the more modern com-
mand as: python -m pip install pandas matplotlib).

In python the first item is o hence 3rd and 4th columns are columns 2 and 3 (unlike in R.)

The script will export a PNG file called plot.png
import pandas as pd
import matplotlib.pyplot as plt

# Read the data from a text file (assuming the file is named 'data.txt')
data = pd.read_csv('./out/score_vs_rmsd.csv', sep=',', header=None)

# Extract the 3rd and 4th columns
x = data.iloc[:, 2]
y = data.iloc[:, 3]

# Create a scatter plot
plt.scatter(x, y)
plt.title('Scatter Plot of 3rd and 4th Columns')
plt.xlabel('3rd Column')
plt.ylabel('4th Column')
plt.grid(True)
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# Save the plot to a PNG file
plt.savefig('plot.png')

Figure 2: Python plot of score *vs* rmsd.csv
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