
Basic Unix - Part I
Jean-Yves Sgro

Updated: December 7, 2016

Contents
1 Introduction 2

2 Set-up: Login the iMac 2
2.1 Terminal . 2
2.2 Open a Terminal: . 2

3 Hard drive 3

4 Command-line operation: The Shell 4

5 The prompt: $ 4

6 Username: whoami 4

7 Files and Directories 5
7.1 Home and working directories . 5
7.2 Listing content directories: ls . 6
7.3 Relative and absolute path . 8
7.4 Privileges and permissions . 9

8 Advanced: Downloading files 10

9 Tab completion 11

10 Creating directories and files 12
10.1 Avoid blank space . 12
10.2 Make a directory: mkdir . 12
10.3 Text files: view and edit content . 13

11 Getting help: manual pages 15

12 Concept: standard input and output 15
12.1 Standards . 15
12.2 Redirect: capturing stdout . 16
12.3 Piping: sending output to other program . 18
12.4 Combining . 19

13 Removing things: rm and rmdir 19
13.1 Removing a file: rm . 19
13.2 Removing directories . 19

14 Copying, moving and renaming: mv 20

15 Summary 20
15.1 Concepts . 20
15.2 Symbols . 20
15.3 Commands learned: . 21

1

16 Resources 21
16.1 Online tutorials . 21
16.2 Online courses . 22
16.3 Software Carpentry . 22

17 R Session 22

References 23

1 Introduction

This workshop is meant to learn and understand basic line commands as they are typed on a text terminal
for a Unix-style operating system (Linux or Macintosh, or Windows with added software.)

This workshop will be loosely inspired by the Software Carpentry class The Unix Shell.1

We will learn “daily commands” i.e. commands that are useful for “every day life” on the computer such as
creating files and directories, editing simple text files etc.

2 Set-up: Login the iMac

Using your NetID credentials login the iMac.

If this is the first time you use this computer some quick set-up will occur.

When the Apple ID screen appears choose to skip this section.

Shortly after you will be logged in “as you” on the computer.

2.1 Terminal

The workshop will be conducted on Apple iMac computers and since MacOS X happens to be a flavor of
Unix we will first start with a terminal on a Macintosh.

If we need to move to a specific Linux system we’ll make specific arrangements, or we can try using a web
browser embedded Linux terminal as a free service, for example:

Choice URL
Best http://www.tutorialspoint.com/unix_terminal_online.php
Good http://bellard.org/jslinux/

However, for now we’ll stay on the Macintosh system.

2.2 Open a Terminal:

The Terminal software is located in /Applications/Utilities and you can navigate there in different ways.

You can also simply use “Spotlight Search” that looks like a magnifying glass : Click the magnifying glass at
the top right corner of your screen and type Terminal then press the return key.

The default Terminal has a white background and black text.
1http://swcarpentry.github.io/shell-novice/

2

https://software-carpentry.org/
http://www.tutorialspoint.com/unix_terminal_online.php
http://bellard.org/jslinux/
http://swcarpentry.github.io/shell-novice/

Note: You can make the text bigger by typing together command + and to reduce the font size type together
command -.

3 Hard drive

The hard drive of a Unix system is organized in the same way as that of your laptop computer. The highest
level of organization might be called C:\ on a Windows system, on a Unix system it is called root and is
usually written with the symbol / (forward slash.)

The file organizational structure is that of an “inverted tree” starting from root and branching out into
directories and files.

Two important directories are bin which contains all the basic operating system software (or binaries, hence
the name bin) and the directory called Users which contains the directory of all the users of the system.

Figure 1: Hard drive organization.

Figure 1.

It should be noted that while bin is a standard name for most if not all systems, Users is a newer label
and older system might have a different name or a different position within the tree. The common name of
directories is available online2.

On most modern systems the Users directory will contain the directory with “your name on it” containing
your data and your files. We will explore this further below with the “home directory” . We will learn
that we also use the “forward slash” or / to separate the name of successive directories within the hard drive
“tree” of directories.

For user nelle that would be /Users/nelle where the leading slash represents root.

Note: Therefore there are two meanings for the / character. When it appears at the front of a file or directory
name, it refers to the root directory. When it appears between names, it’s just a separator.

2https://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard#Directory_structure

3

https://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard#Directory_structure

4 Command-line operation: The Shell

Before the development of graphical user interfaces (GUI) the command line interface (CLI) was the only
way a user could interface with the computer.

A program called the shell takes commands typed on the keyboard and transfers them to the operating
system (OS) for execution:

Figure 2: The shell transfers commands.

Figure 2

The Bourne Again SHell or bash shell is currently the default and most widely used shell, but other shell
programs do exist and are available on a typical Unix-based system. These include: ksh, tcsh and zsh.

In this workshop we will only use bash.

5 The prompt: $

If you have not opened a Terminal yet please do so now using the information above.

Within the newly opened Terminal you can see some text, and the last character is likely a $ which usually
signifies that you are logged into a bash shell command line.

The $ is called “the prompt” a word with many definitions but one of the definitions in the Merriam-Webster
dictionnary summarizes it well:

“verb: to move to action : incite”

In other words it is an “invitation” from the computer for you to give it a command.

Since the Terminal invites us for a command, let’s see if we can check the name of the shell we are running.

At the prompt type the following command with the word shell in uppercase preceded by an attached $ sign
which has a different function than the static $ prompt. This will be reviwed in a later section.
echo $SHELL

/bin/bash

You can see that the shell is actually a software that resides within the bin directory.

6 Username: whoami

In the Software Carpentry class The Unix Shell we follow Nelle Nemo – (Nemo is Latin for “nobody” so
she is probably not related to the famous Captain Nemo. . .).

Her username on the system is nelle and some commands refer to that.

4

Since you logged-in as you earlier on the iMac you probably know or easily guess your user name on this
system. However, we’ll learn our first command to verify that you are indeed logged-in as you!

The command is whoami and will echo on the screen your user name. Type the following command, press
return and see who the bash shell thinks you are:
whoami

jsgro

The result is my username. . .

Of course for you the result will be different!

Commands:
More specifically, when we type whoami the shell:

1. finds a program called whoami,
2. runs that program,
3. displays that program’s output, then
4. displays a new prompt to tell us that it’s ready for more commands.

7 Files and Directories

7.1 Home and working directories

7.1.1 Home directory

We already looked at the hard drive organization above and we could see that nelle (or you) will have your
files stored in a directory named after your user name and contained within the Users directory. For Nelle
Nemo that would be /Users/nelle which would represent her “home directory” .

When you first login or open a new terminal you “land” inside the “home directory” wherever it may be
located within the hard drive.

Note: There is a very convenient short-cut to signify the home directory which can be symbolically represented
by the tilde symbol ~ usually the key below the esc ecape key on most English-based keyboards.

In the next paragraph we’ll learn how we can know in which directory we have “landed” or, if we have
changed directory, know in which directory we are currently.

7.1.2 Working directory:

For now we only know that we should be in the “home directory” but later we’ll navigate in and out of
directories that we’ll create or copy. It’s easy to get lost! Therefore knowing which directory you are currenly
“looking into” is very useful.

The command for that is pwd or print working directory:
pwd

/Users/jsgro

This is my “home directory” and you will see your “home directory” when you run this command.

5

7.1.3 Changing directory

We don’t have any other directory that we know of yet but we can learn this command already since “it will
always bring you home” if you are lost.

To change directory we use the command cd which is made from the first two letters of the English phrase
“change directory” as is the case for many other shell commands.
cd

We will use this command later to move in and out of directories.

7.2 Listing content directories: ls

Specific, empty standard directories are created wihtin the “home directory” when a new user is added on a
Macintosh computer. These directories are empty. Since we landed in the “home directory” we can ask to see
them with the command ls short for the word list:
ls

You should see something like this on your terminal:

Last login: Tue Mar 22 08:50:34 on console
BIOCWK-00875M:~ jsgro$ ls
Desktop Downloads Movies Pictures
Documents Library Music Public
BIOCWK-00875M:~ jsgro$

ls prints the names of the files and directories contained within the current directory in alphabetical order,
arranged neatly into columns.

If you have used this computer before there might be other files or directories.

We can update the file structure tree figure to reflect the content of your home directory, the top levels are
simplified for clarity:

Figure 3: Hard drive organization for YOU.

Figure 3.

6

Of course, on the Macintosh itself you can use the graphial user interface (GUI) to look at the content of
your directories. However, the purpose of this tutorial is to learn how to use the line command interface
(CLI) which is useful when connecting to a remote computer that cannot be controlled with a GUI but only
with the CLI.

Since these directories are new, for now they don’t contain anything.

Exercise: verify that the directories are empty.
(Hint: ls.)

7.2.1 Command flags

We can modify the behavior of most shell commands by adding flags, for example the flag -F tells ls to add
a trailing / to the name of directories (but not files.) Since we only have directories within the current folder
all output will be flagged.

Note that there is a white space (of any length) between ls and -F to separate the two words. Without the
space, the shell would think that we’re trying to run a command called ls-F, which doesn’t exist.
ls -F

Desktop/ Downloads/ Movies/ Pictures/
Documents/ Library/ Music/ Public/

7.2.2 All (hidden) files

You saw above that the directories are “empty” if you were a new user to this computer because they were
freshly made. However, all directories contain within themselves at least two hidden files.

The flag to see all files is -a
ls -a Documents

. .. .localized

We can also use it together with the flag we already know.

Note that there is no space between them. (An alternate notation would be ls -a -F with a space between
each of the - dashes.)
ls -aF Documents

./ ../ .localized

Therefore we discovered that there are three hidden files in the directory. If you want you can check that all
other directories harbor the same files even though they are “empty.”

The .localized files are empty files specific to the Macintosh. They are used when a user has changed
the default langage within the “International” preferences to reflect their local langage. For example a
computer set to French would change on the fly the names Users and Library to their French equivallent of
Utilisateurs andBibliothèque.3

However, the two most important items are . (dot) and .. (dot dot) which are directories themselves as
shown by the trailing /.

They are the symbolic representation of the “current directory” (dot) and the “parent directory” (dot dot).

Notation Spoken Name Definition
. dot Current directory
3See https://discussions.apple.com/thread/252040 (archived at: http://bit.ly/1RgVXcX)

7

https://discussions.apple.com/thread/252040
http://bit.ly/1RgVXcX

Notation Spoken Name Definition
.. dot dot Parent directory: directory “above” containing the “current”

directory.

We will use this knowledge in the following section.

Figure 4: Current (dot) and parent (dot dot) directories.

Figure 4.

Note: Other common hidden files exist to customize the bash shell and would be located only within the
home directory. They are typically called .bash_profile, .bashrc or .bash_login. The . prefix is used to
prevent these configuration files from cluttering the terminal when a standard ls command is used.

7.3 Relative and absolute path

Referring to Figure 3 above we can see that starting from root the graphical “trail,” “route,” or “pathway” to
go from root to arrive at any of the directories within your “home directory” (for example Documents) could
be written as /Users/YOU/Documents. (Of course you would replace YOU with your whoami user name.)

The first forward slash / is the name of root and the subsequent / are the trailing separators as we saw
above with the ls -F command. The separator is a forward slahes / and not a backslash \ as is used in
Windows.

The formal name for this written desctiption of pathway from root to final directory or file is path.

The path can be absolute or relative.

An absolute path is a description starting from / (root) which is therefore complete and unambiguous
since there is only one root within the computer file organization.

A relative path is a description starting from another folder than root.

Since we already learned the command to change directory we can now move into the Documents directory
for example and learn something about path:
cd Documents

We are now within the Documents directory. Therefore:

• the current directory is Documents also ./
• the parent directory is the “home directory” also ../ and ~

8

• the relative path to the Downloads directory is ../Downloads
• the absolute path to the current directory is /Users/YOU/Documents

Exercise: you can verify the validity of these statements with the commands:
ls -a
ls .
ls ./
ls ..
ls ../
ls ../Downloads
pwd

7.4 Privileges and permissions

On your own laptop or desktop you can make changes such as creating a directory, or moving a file from
one place to another, usually by GUI. There are a few things that may require “Admin” or “Administrator”
privileges for some operations such as installing software.

As a user you have the “privilege” to see, manipulate and change your own files and directories.

On shared computers it may be useful to prevent other users to see the files of a specific directory.

For this purpose directories and files can be tagged with the specific operation that a user can do, the “owner”
of the file or another user.

We can “see” the privileges associated with files and directories simply by listing them with the -l flag to
provide a long list with more details.

Remember that we already learned that the special symbol for the “home directory” is ~. Therefore, whereever
we are at the moment we can ask the listing of that directory:
ls -l ~

total 0
drwx------+ 5 YOU AD\Domain Users 170 Mar 15 18:36 Desktop
drwx------+ 3 YOU AD\Domain Users 102 Jun 19 2014 Documents
drwx------+ 5 YOU AD\Domain Users 170 Mar 15 18:36 Downloads
drwx------@ 43 YOU AD\Domain Users 1462 Mar 15 18:36 Library
drwx------+ 3 YOU AD\Domain Users 102 Jun 19 2014 Movies
drwx------+ 3 YOU AD\Domain Users 102 Jun 19 2014 Music
drwx------+ 3 YOU AD\Domain Users 102 Jun 19 2014 Pictures
drwxr-xr-x+ 5 YOU AD\Domain Users 170 Jun 19 2014 Public

The privileges are described within the first column and will be explained below.

In order to organize privileges and permissions the Unix system is designed around the following definitions:

Table 3: Definitions of user groups. In the listing above they belong
to user YOU and group AD\Domain Users.

User group Definition
user A user of the computer. Your specific user name is shown with whoami.
group Multiple users can be assembled into a group e.g. from the same lab.

The system administrator of the computer will create the group.
others This is “anyone” else; on older system this was called “the world”.
all Contains everyone including user, group and anyone but not present

in this listing.

9

Therefore a file “belongs” a user and a group.

The privileges and item nature are defined in the following table. The rwx privileges are shown in columns
ordered by user, group and others from left to right. For each a set of rwx applies unless one of the
privilege is not granted as expressed by -:

Table 4: Privilege tags

Privilege Definition
d This is a directory
r The file can be read.
w The file can be writen or even overwriten.
x The execute privilege. For a directory it means its content can be listed.
- The privilege within that column is not granted.

The @ and + are rather new addition and part of the Access Control List (ACL) method added in the
80’s. These are “extended” privileges that casual users should not interfere with and only useful to system
administrators. For all info on this subject consult (Rubin 1989) (see online link in reference section.)

Therefore the listing:

drwxr-xr-x+ 5 YOU AD\Domain Users 170 Jun 19 2014 Public

can be read in plain English as: Public is a directory (d) that is owned by YOU and AD\Domain Users group.
The owner has read, write and execute privileges (rwx). Privileges are only read and execute (r-x) for group
and other. The directory information uses 170 bytes of hard drive space, and was created on June 19, 2014.

8 Advanced: Downloading files

In order to continue with the Software Carprentry files we need to download them.

While they have students download the files using the GUI and placing the result on the Desktop at the
beginning of the tutorial, we’ll accomplish that task by CLI to mimic a situation where we are connected to a
remote computer without GUI:

If you are pressed by time and want to do the task by GUI here is the edited original information:

Getting ready
You need to download some files to follow this lesson:

• Download shell-novice-data.zip and move the file to your Desktop.
• The URL is: http://swcarpentry.github.io/shell-novice/data/shell-novice-data.zip
• Note: Here is an alternate source in my DropBox: http://go.wisc.edu/38t26c
• Unzip/extract the file (ask your instructor if you need help with this step). You should end

up with a new folder called data-shell on your Desktop.

Now let’s do this task by line command! We’ll need two commands:

• one command to download the file: curl
• one command to unzip the file: unzip

Note: On Linux the command wget could be used instead of curl but is not installed by default
on the MacOS system.

First, let’s go to the directory where we want to save the file: the Desktop.

10

http://swcarpentry.github.io/shell-novice/data/shell-novice-data.zip
https://db.tt/mZHFh2kf
http://go.wisc.edu/38t26c

cd ~/Desktop
pwd

Now let’s download the file. The program curl can be used to “transfer a URL”. We’ll need to specify the
URL where to get the file, and specify the output name we want with the -o flag:
curl http://swcarpentry.github.io/shell-novice/data/shell-novice-data.zip -o shell-novice-data.zip

Now we can unzip the file:
unzip shell-novice-data.zip

This will unzip the content of the file and create a directory named data-shell located on the Desktop of
your computer. You can probably also see it within the GUI on the Desktop of your computer.

We can now use commands we already learned to explore this directory.

We already know the flags -F and -a. Flag C forces the output into columns if that would not be the default.
We also use the ~ shortcut for “home directory”.
cd ~/Desktop/data-shell
ls -FaC

./ creatures/ notes.txt

../ data/ pizza.cfg

.DS_Store molecules/ solar.pdf

.bash_profile mycontent1.txt sun_length.txt
Desktop/ mycontent2.txt writing/
NewDir/ mydir/
NewDir2/ north-pacific-gyre/

We can explore the content of the directories but also change into any directory if we choose to with the cd
command. We can go one level further down and list the content:
cd data
ls -F

amino-acids.txt pdb/
animals.txt planets.txt
elements/ salmon.txt
morse.txt sunspot.txt

Here we can use the “dot dot” name for the “parent” directory to cd back “up” one level, and we don’t have
to know or type the actual name of the directory itself! (Note: the trailing / is not mandatory for the cd
command.)
cd ../
ls -F

Desktop/ molecules/ pizza.cfg
creatures/ north-pacific-gyre/ solar.pdf
data/ notes.txt writing/

9 Tab completion

So far we did not have to type much. However, somtimes file names can be long. We can use the TAB key to
complete partially typed names of files or directories, and this will “traverse” the path and we can write a lot
of text without typing.

11

For example, there is a file called methane.pdb within the molecules directory. We are going to list that file
with minimal typing:

Let’s try it:

Assuming we are within the data-shell directory (or provide the appropriate cd command!)

• type ls
• type m and the press the TAB key: this will complete the word molecules as there are no other words

starting with the letter m so there is no ambiguity.
• Note that a trailing / was automatically added
• type m and press TAB this will complete the command as:

ls molecules/methane.pdb

What if there are ambiguities? There are two solutions: either type additional letters, or use the double TAB
to find what the options are. For example there are two files starting with the letter p in the molecules
directory. Pressing TAB twice will provide the list of available options. Lets try it:

• we are currently within the data-shell directory
• type ls
• type m and press TAB to complete molecules
• type p and press TAB - you will hear a sound and word is not completed after p
• type TAB again: a list of options is offered: pentane.pdb propane.pdb
• you can now finish the command by typing one additional letter (either e or r) to finish the command.

Depending on your choice the final command will be either:
ls molecules/pentane.pdb

or
ls molecules/propane.pdb

10 Creating directories and files

So far we have only used existing files and directories.

10.1 Avoid blank space

Important note: white spaces or blanks should not be used for file or directory names on a
Unix-style system. It is better to use dashes - or underscore _ to separate words. However, if
a file exists with white spaces, for example File 1 of data it is possible (but tedious) to use
that name. There are two solutions: “escape” each white space with the backslash \ or put the
complete file name within quotes:

• With backslash escape notation the file can be used as: File\ 1\ of\ data.

• With quote notation the name can be used as: "File 1 of data"
White spaces are a common cause of error.

10.2 Make a directory: mkdir

On the GUI it is easy to create and move directories around. The same functionality exists with the CLI and
it’s easy provided we know where we are currenlty working (pwd).

12

Assuming we are within data-shell let’s create a new directory called mydir. The command mkdir is used
to make a directory:
cd ~/Desktop/data-shell
mkdir mydir

We now realize that’s not the name we wanted! So, we can change it with the move mv command and give it
a new name:
mv mydir mydata

This command would work in the same way on file names.

10.3 Text files: view and edit content

Shell commands exist to inspect the content of existing files and simple software exist to create new files.

10.3.1 Display file content

Different commands can be used to display all or portions of a text file.

For short files it is easy to type the complete file content onto the screen. For longer files we may want to see
the beginning or the end of the file.

Make sure you are within ~/Desktop/data-shell. We can display the content of the notes.txt file with
the cat command:
cd ~/Desktop/data-shell
cat notes.txt

- finish experiments
- write thesis
- get post-doc position (pref. with Dr. Horrible)

For larger files we may be interested to see only the begining or the end of the file. Let’s look for example at
file ~/Desktop/data-shell/data/sunspot.txt.

The commands head and tail respectively show the begining and end of the file, namely the first or last 10
lines. However, we can add a number flag to reduce this to the first 5 lines or last 3 lines as shown:
cd ~/Desktop/data-shell/data
head -5 sunspot.txt

(* Sunspot data collected by Robin McQuinn from *)
(* http://sidc.oma.be/html/sunspot.html *)

(* Month: 1749 01 *) 58
(* Month: 1749 02 *) 63
cd ~/Desktop/data-shell/data
tail -3 sunspot.txt

(* Month: 2004 12 *) 18
(* Month: 2005 01 *) 31
(* Month: 2005 02 *) 29

From this we can conclude that observations listed for sun spots start in 1749 and end in 2005.

13

There are two other, more sophisticated commands to explore longer files: more and less which are the older
and newer versions of the same program respectively and allow to display only one screenful of text at a time.
Let’s try it.
less sunspot.txt

• Now press the space bar to go forward 1 full screen at a time.
• Press return to advance only one line at a time.
• less is newer and allows the use of the up and down arrows to explore content up and down the file.
• Press q to quit

Note: Files with very wide lines would “wrap” around and occupy more than one line on the screen terminal.
The command less -S would prevent wrapping and the left and right arrows can be used to explore text
side-ways on the screen.

10.3.2 Editing text file with nano

A full page text editor suitable for beginners called nano is now part of default available software and very
useful to edit small text files.

Note: The old name of nano was pico so if you are working on a system that does not have nano try to use
command pico instead. On a Mac both commands open the same nano software.

nano can open an existing file to modify its content or create a new file. Let’s create a simple file called
simple.txt containing just a few lines.
cd ~/Desktop/data-shell/
nano simple.txt

This will open a full screen editor. Ctrl command options are shown at the bottom of the screen:
GNU nano 2.0.6 File: simple.txt

- - - - THIS IS THE AREA WHERE YOU TYPE TEXT - - - -
- - - - Use up, down, left, and right arrows - - - -
- - - - to navigate, NOT the mouse! - - - -

^G Get Help ^O WriteOut ^R Read File^Y Prev Page^K Cut Text ^C Cur Pos
^X Exit ^J Justify ^W Where Is ^V Next Page^U UnCut Tex^T To Spell

Write some simple text, then press Control and X keys at the same time to exit the program and write the
new file to the current directory.

On exiting you may have to answer Yes or Y to the questions:
Save modified buffer (ANSWERING "No" WILL DESTROY CHANGES) ?
Y Yes
N No ^C Cancel

Note: The command shown as ˆO for Control + O (capital letter Oh) would write the current changes but
stay within the editing mode for further editing.

14

11 Getting help: manual pages

So far we have seen commands that are rather simple to remember as they are made with a few letters of an
English description: cd, mkdir, ls etc.

The behavior of almost all commands can be altered with flags: ls -F and there are many others.

The manual pages contains a complete description of the commands as well as a list and description of all
available flags. Sometimes examples are provided. The command function will be described on the first line.

The manual pages for a given command are called with man and the name of the command.

The information will be displayed with the less screen display and the information can be read following the
less method:

• space bar to go down one screen
• return to go down one line
• up and down arrows to move up and down
• q to quit

Exercise. You can try man on some of the commands we already know:

man man
man ls
man echo
man cd
man bash
man mkdir

Note: the manual pages are written in “geeky” language and may take some time to get used to. However,
they provide a basis for immediate help or for quick understanding of the functionality of a command.

12 Concept: standard input and output

12.1 Standards

One of the most powerful Unix concept is the idea of standard input and standard output which are
represented by your keyboard and your terminal screen respetively.

In fact standard output is internally split in “two channels” called stdout and stderr for the standard
software output and standard error output in case errors are to be reported.

There are therefore three “streaming” channels for Input/Output (I/O)

Table 5: Understanding I/O streams numbers

Handle Name Description
0 stdin Standard input
1 stdout Standard output
2 stderr Standard error

Figure 5

15

Figure 5: Standard Input/Output channels.

12.2 Redirect: capturing stdout

The “streaming” output can be “captured” so that instead of going to the screen display it will be “redirected”
into a file or into another program. This is the basis for the power of Unix.

12.2.1 Single redirect: >

When you type ls you see the results of listing the files onto your screen.

We can instead “redirect” this into a file as specified by the symbol > and the name of the file we want to
create.

Let’s try it! First let’s do a “regular” ls and then let’s redirect the content of the directory into a file called
mycontent1.txt and a second time with ls -C into mycontent2.txt. We’ll see why in a minute!
cd ~/Desktop/data-shell/
ls
ls > mycontent1.txt
ls -C > mycontent2.txt

The first ls will show the output on the screen and display the content in arranged columns, the default
when output is to the screen.

Now we can see the content of the 2 files that we created by using the commands:
cat mycontent1.txt
cat mycontent2.txt

You will note that mycontent1.txt shows the results in a single column while mycontent2.txt shows the
same column organization as the default screen display.

If you look within the man pages for ls you can see the following statements:
-1 (The numeric digit ``one''.) Force output to be one entry per line.

This is the default when output is not to a terminal.

-C Force multi-column output; this is the default when output is to a terminal.

16

Therefore a “regular” ls is in fact equivallent to ls -C when used casually to display on screen display, but
is equivallent to ls -1 (number one) when redirecting to a file.

Important note: > will redirect into a file. The file will be created if it does not exist (and if as a
user you have the write privilege wihtin that directory). However, if the file already exists the
file will be overwritten there will be no warning! And in addition there are no undo for this.
Therefore, while this is very powerful it should be always used with care.

That said, the single redirect > can also be used to create simple text files “on the fly” without using any
word processor. However, text can only be edited on the current line. The important thing to remember here
is that it is necessary to tell the computer when you are done with the text input and want to return to the
prompt: this is done by sending a Control d that signifies EOF or end of file.

Exercise: Create a file called mynotes.txt containing about 2 lines as shown below:
cd ~/Desktop/data-shell/

cat > mynotes.txt
This is text that is going into the file.
It is a nice way to take notes on the fly.
The current directory content is:

Now hold the 2 keys together: CONTROL D

If you don’t type Control d you will not get the $ prompt back.

We will use this file in the next segment!

Note: I personally use this method often to leave “notes to myself” within directories where I work as a trail
of information, commands that I used etc.

12.2.2 Double redirect: >> append to a file

The single redirect > will overwrite (clobber) the file if it already exists.

There are cases where we may want to add (append) more information at the end of the file and this can be
accomplished with the help of the double redirect >>.

For example, let’s complete the mynotes.txt file above by actually adding the content of the directory as
stated in the file.

There are two ways we could accomplish that:

• we can do an actual ls or ls -C and double redirect the results >> into mynotes.txt
• Since we already have the directory content within files mycontent1.txt and mycontent2.txt we could

redirect that instead.

The commands would be either:
cd ~/Desktop/data-shell/
ls -C >> mynotes.txt

or, with cat it would be:
cd ~/Desktop/data-shell/
cat mycontent2.txt >> mynotes.txt

We have now “appended” the content of file mycontent2.txt at the end of file mynotes.txt. You can verify
that by simly typing the content of mynotes.txt to the screen!

17

cat mynotes.txt

The 2 files have indeed been concatenated (glued) together and that is where the command cat gets its
name: concatenated!

If you look into the man pages for cat you will see that both functions that we just used are described in the
first line of the description:
NAME

cat -- concatenate and print files

12.3 Piping: sending output to other program

We just used the single > and double >> redirect method to “capture” standard output (stdout) and sending
it to a file that we created or appended to an existing file.

But why stop there? Once the output stream has been redirected into a file it stops there. However, there is
another method, piping with symbol | that allows the stream of output to be passed to another program. In
fact multiple programs can be used in a “piping chain” for powerful data manipulation.

Let’s see a simple example that will involve counting the number of lines, words and bytes within a file with
the command wc (word count.)

First we can use file ~/Desktop/data-shell/data/animals.txt which contains only 8 lines. You can verify
that with cat -n that will number lines:
cat -n ~/Desktop/data-shell/data/animals.txt

1 2012-11-05,deer
2 2012-11-05,rabbit
3 2012-11-05,raccoon
4 2012-11-06,rabbit
5 2012-11-06,deer
6 2012-11-06,fox
7 2012-11-07,rabbit
8 2012-11-07,bear

Now let’s use wc to see that it’s true by “piping” the standard output provided by cat into the wc program:
cat ~/Desktop/data-shell/data/animals.txt | wc

8 8 136

The results shows that there are 8 lines, 8 words (there are no spaces on text within each line,) and 136
“bytes” which are all the visible letters with the addition of invisible (blanks) and non-printable characters
such as tab or the end-of-line also called “newline.”

Note that wc -l will only provide the very first number (instead of 3) representing only the number of lines:
cat ~/Desktop/data-shell/data/animals.txt | wc -l

8

The usefulness of this can be better understood with a larger file.

Exercise: How many lines are in file ~/Desktop/data-shell/data/sunspot.txt (Hint: cat and
wc -l) _______________________

18

12.4 Combining

Multiple pipes can be used and in addition the last output can also be redirected into a file! For example
let’s consider the following command:
cat ~/Desktop/data-shell/data/animals.txt | wc -l > animals_length.txt

The final output is redirected into a new file that will contain the result of the command pipeline, in that
case the number 8.

Here is another example of 2 pipes and a redirect:
cat ~/Desktop/data-shell/data/sunspot.txt | head -50 | wc -l > sun_length.txt

Note: the use of cat is not mandatory in these previous examples and exercises, but it allows one more “layer”
of process to understand the piping method.

13 Removing things: rm and rmdir

13.1 Removing a file: rm

We can remove the file just created above for example:
rm animals_length.txt

There is no warning and no undo.

13.2 Removing directories

13.2.1 Empty directories

If a directory is empty (except for the standard . and ..) it can be removed with the command rmdir. We
can use that command to remove the directory mydata created above (it was mydir renamed as mydata by
command mv.)
rmdir ~/Desktop/data-shell/mydata

There will be no warning. And there is no undo!

13.2.2 Directories with content

If the directory contains other files or directories, which can be many levels deep, we need to use the rm
command used for files but we need to make the command recursive which means to act on all sub-directories
and sub-sub-directories etc.

The final command would be rm -r followed by the directory name.

However, if files are “locked” in some way but the user still have privileges to remove them the -f (force)
flag may be extremely useful for a final command of rm -rf followed by the directory name. (Again: NO
warnings and NO undo!.)

19

14 Copying, moving and renaming: mv

We already encountered the mv command that we used to change the name of a directory. However, during
the name change the location of the file can be changed as well.

Here are some example with # commented lines:
Make 2 new directories:
mkdir ~/Desktop/data-shell/NewDir
mkdir ~/Desktop/data-shell/NewDir2
Change into that directory:
cd ~/Desktop/data-shell/
copy file mycontent1.txt into NewDir
cp mycontent1.txt NewDir
list content of NewDir
ls NewDir
Copy file mycontent1.txt into NewDir2
But change its name at the same time:
cp mycontent2.txt NewDir2/Copy-of-mycontent2.txt
check content of NewDir2
ls NewDir2

15 Summary

15.1 Concepts

Concept Definition
Standard input Default: the keyboard. Input piped data
Standard output Default: the screen display. Redirect to file or pipe
Standard error Default: the screen display.
Redirect Take standard input and send to file
Pipe Take standard output and pass to next command as standard input

15.2 Symbols

Table 7: Symbols and filters

Symbol Meaning
$ Shell prompt
$ Add to varialbles to extract value: e.g. echo $SHELL
~ Shortcut for home directory
/ Root directory. Also Separator on path names
> Single redirect: sends standard output into a named file.
>> Double redirect: appends standard output to named file.
| Pipe: transfers standard output to next command/software.

20

Table 8: File descriptors

File Meaning
. Current directory. Can be written as ./
.. Parent directory. Can be written as ../
/dev/stdin Standard input
/dev/stdout Standard output
/dev/stderr Standard error

15.3 Commands learned:

Table 9: Commands in order of appearance in the text

Command man page definition and/or example
echo write arguments to the standard output. echo $SHELL
whoami display effective user id.
pwd return working directory name.
cd change directory
ls list directory contents. ls -F, ls -FaC
curl transfer a URL.
unzip list, test and extract compressed files in a ZIP archive.
mkdir make directories.
mv move files. (Can rename file/directory in the process.)
cat concatenate and print files.
head display first lines of a file.
tail display the last part of a file.
nano (Text editor) Nano’s ANOther editor, an enhanced free Pico clone.
wc word, line, character, and byte count.
rm remove directory entries i.e. remove files. Remove non-empty dir with rm -r
rmdir remove directories (empty dirs)
cp copy files.

16 Resources

16.1 Online tutorials

There are many many online tutorials about Unix and any Google search will yield plenty of results. Here is
a table with a few tutorials that seem to be reasonably well prepared with a target audience of beginner. The
“Archived” column refers to the URL saved at archive.org if it exists.

Table 10: Online resources

Name.of.Tutorial URL Archived
UNIX Tutorial for
Beginners

http://www.ee.surrey.ac.uk/Teaching/Unix/ http:
//bit.ly/1pixR8C

UNIX Tutorial http://people.ischool.berkeley.edu/~kevin/
unix-tutorial/toc.html

http:
//bit.ly/22374hN

A Practical Guide to
Ubuntu Linux: The
Shell

http://www.informit.com/articles/article.aspx?p=
2273593&seqNum=5

http://bit.ly/
1ZwILUA

21

http://archive.org
http://www.ee.surrey.ac.uk/Teaching/Unix/
http://bit.ly/1pixR8C
http://bit.ly/1pixR8C
http://people.ischool.berkeley.edu/~kevin/unix-tutorial/toc.html
http://people.ischool.berkeley.edu/~kevin/unix-tutorial/toc.html
http://bit.ly/22374hN
http://bit.ly/22374hN
http://www.informit.com/articles/article.aspx?p=2273593&seqNum=5
http://www.informit.com/articles/article.aspx?p=2273593&seqNum=5
http://bit.ly/1ZwILUA
http://bit.ly/1ZwILUA

Name.of.Tutorial URL Archived
Unix Tutorial http://www2.ocean.washington.edu/unix.tutorial.html http:

//bit.ly/1LUgiFM
Learn Unix http://www.tutorialspoint.com/unix/ http://bit.ly/

1YCh8ZN
Part1 : Survival guide
for Unix newbies

http://matt.might.net/articles/basic-unix/ http:
//bit.ly/2237l4k

Part2 : Settling into
Unix

http://matt.might.net/articles/settling-into-unix/ http:
//bit.ly/1LeFHd6

The Linux Command
Line

http://linuxcommand.org/ http:
//bit.ly/223JcdO

16.2 Online courses

16.2.1 Students only (STS)

UW Students have access to free classes from the DoIT and may be able to access “Linux in a Day”. The
complete class offerings is at sts.doit.wisc.edu/classlist.aspx (NetID login required.)

16.2.2 All UW

All UW personel on the other hand can access the video courses from Lynda.com. See it.wisc.edu/services/online-
training-lynda-com/

Searching for the word “Linux” currently yields 6 beginner level courses for various flavors of Linux.

A search for the word “Unix” only has one entry “Unix for Mac OS X Users” a beginner level course of
6h35min.

Another relevant search is “bash” which also yields a single beginner level course of 1h35min “Up and Running
with Bash Scripting.”

16.3 Software Carpentry

Software Carpentry is a volunteer organization whose goal is to make scientists more productive, and their
work more reliable, by teaching them basic computing skills.

They provide two Unix tutorials versions, one in video format and one in text format. The video format is
useful for pre-class learning.

Title URL Archived
The Unix Shell (Text) http://swcarpentry.github.io/

shell-novice/
http:
//bit.ly/1piCBel

The Unix Shell (video) http://swcarpentry.github.io/v4/
shell/index.html

http://bit.ly/
1UVSQK6

17 R Session

This document was created with R and RStudio software with the followingconfiguration:

22

http://www2.ocean.washington.edu/unix.tutorial.html
http://bit.ly/1LUgiFM
http://bit.ly/1LUgiFM
http://www.tutorialspoint.com/unix/
http://bit.ly/1YCh8ZN
http://bit.ly/1YCh8ZN
http://matt.might.net/articles/basic-unix/
http://bit.ly/2237l4k
http://bit.ly/2237l4k
http://matt.might.net/articles/settling-into-unix/
http://bit.ly/1LeFHd6
http://bit.ly/1LeFHd6
http://linuxcommand.org/
http://bit.ly/223JcdO
http://bit.ly/223JcdO
http://sts.doit.wisc.edu/classlist.aspx
https://it.wisc.edu/services/online-training-lynda-com/
https://it.wisc.edu/services/online-training-lynda-com/
http://swcarpentry.github.io/shell-novice/
http://swcarpentry.github.io/shell-novice/
http://bit.ly/1piCBel
http://bit.ly/1piCBel
http://swcarpentry.github.io/v4/shell/index.html
http://swcarpentry.github.io/v4/shell/index.html
http://bit.ly/1UVSQK6
http://bit.ly/1UVSQK6

sessionInfo()

R version 3.2.4 (2016-03-10)
Platform: x86_64-apple-darwin13.4.0 (64-bit)
Running under: OS X 10.11.6 (El Capitan)

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats graphics grDevices utils datasets methods base

other attached packages:
[1] pander_0.6.0 DiagrammeR_0.8.2 knitr_1.15.1

loaded via a namespace (and not attached):
[1] Rcpp_0.12.3 codetools_0.2-14 visNetwork_0.2.1 digest_0.6.9
[5] rprojroot_0.1-1 plyr_1.8.3 jsonlite_0.9.19 magrittr_1.5
[9] evaluate_0.10 scales_0.4.0 stringi_1.0-1 rstudioapi_0.5
[13] rmarkdown_1.2 tools_3.2.4 stringr_1.0.0 htmlwidgets_0.6
[17] munsell_0.4.3 yaml_2.1.13 colorspace_1.2-6 htmltools_0.3.5

References

Rubin, Craig. 1989. Rationale for Selecting Access Control List Features for the Unix System. 2nd ed.
FORT GEORGE G. MEADE, MARYLAND 20755-6000: NATIONAL COMPUTER SECURITY CENTER.
NCSC-TG-020-A. DIANE Publishing. http://fas.org./irp/nsa/rainbow/tg020-a.htm.

23

http://fas.org./irp/nsa/rainbow/tg020-a.htm

	Introduction
	Set-up: Login the iMac
	Terminal
	Open a Terminal:

	Hard drive
	Command-line operation: The Shell
	The prompt: $
	Username: whoami
	Files and Directories
	Home and working directories
	Listing content directories: ls
	Relative and absolute path
	Privileges and permissions

	Advanced: Downloading files
	Tab completion
	Creating directories and files
	Avoid blank space
	Make a directory: mkdir
	Text files: view and edit content

	Getting help: manual pages
	Concept: standard input and output
	Standards
	Redirect: capturing stdout
	Piping: sending output to other program
	Combining

	Removing things: rm and rmdir
	Removing a file: rm
	Removing directories

	Copying, moving and renaming: mv
	Summary
	Concepts
	Symbols
	Commands learned:

	Resources
	Online tutorials
	Online courses
	Software Carpentry

	R Session
	References

