
Basic Unix - Part II
Jean-Yves Sgro

Updated: December 7, 2016

Contents
1 Pipes and Filters 1

1.1 Wild cards . 2
1.2 Sorting . 3

2 Redirecting input 4

3 Nelle’s Pipeline 4
3.1 Starting point: North Pacific Gyre . 4
3.2 Checking gyre data files . 5

4 Pattern recognition: grep 6
4.1 Simple text pattern . 6
4.2 Regular expressions . 7
4.3 Which files contain a given pattern? . 7

5 Streaming editor: sed 8

6 Editing standard output: cut 8

7 Character translator: tr 9
7.1 DNA into RNA . 10

8 Loops 11
8.1 Variables . 12
8.2 For loop . 14

9 Nelle’s Pipeline: Processing Files 17
9.1 Nested loops . 17

10 Scripts 18
10.1 ADVANCED: Additional info . 18

11 Summary 19
11.1 Concepts . 19
11.2 Variables . 19
11.3 Symbols . 19
11.4 New commands learned: . 20

1 Pipes and Filters

This section reflects content from software carpentry tutorial page http://swcarpentry.github.io/shell-novice/
04-pipefilter/

We will practise the commands and concepts we learned and look at the shell’s most powerful feature: the
ease with which it lets us combine existing programs in new ways.

1

http://swcarpentry.github.io/shell-novice/04-pipefilter/
http://swcarpentry.github.io/shell-novice/04-pipefilter/

Two main ingredients make Unix (Linux/MacOS) powerful (quoting from the tutorial):

Instead of creating enormous programs that try to do many different things, Unix programmers focus on
creating lots of simple tools that each do one job well, and that work well with each other. This programming
model is called “pipes and filters”.

Little programs transform a stream of input into a stream of output. Almost all of the standard Unix tools
can work this way: unless told to do otherwise, they read from standard input, do something with what they’ve
read, and write to standard output.

The key is that any program that reads lines of text from standard input and writes lines of text to standard
output can be combined with every other program that behaves this way as well. This is the power of piping.

1.1 Wild cards

We start by looking into the molecules directory containing six Protein Data Bank (.pdb) files, a plain text
format that specifies the type and position of each atom in the molecule, derived by X-ray crystallography or
NMR.
ls -C molecules

cubane.pdb methane.pdb octane.pdb propane.pdb
ethane.pdb middle.sh pentane.pdb

All files end with the .pdb filename extension. What if we wanted only files that start with the letter p and
we did not want to specify what the rest of the file name was. In that case we would use of a new symbol: *
called the wild card which is meant to match zero or more characters in a command. Therefore p* would
represent all files that start with p no matter what comes after:
ls molecules/p*

molecules/pentane.pdb
molecules/propane.pdb

We could also call all the files that end with .pdb wtih *.pdb.

The wild card can replace an number of characters. On the other hand the symbol ? represents one character
and more than one ? can be used to specify excatly how many characters should match.

Exercise: Try the following commands:
ls ?thane.pdb
ls ??thane.pdb

We will now use the word count commannd wc we learned previously to count the number of lines. But since
we are only interested in the number of lines we’ll use wc -l as we have seen before.

The command sends the results to the screen display (standard ouptut), but we know how to “capture”
this information and send the results to a file instead thanks to redirection with > into a new file we call
lengths.txt. We then move back into the data-shell directory. Since data-shell contains molecules it
is the “parent” and therefore can be represented symbolically with dot-dot: ...
cd molecules
wc -l *.pdb
wc -l *.pdb > lengths.txt
cd ..

20 cubane.pdb
12 ethane.pdb
9 methane.pdb

30 octane.pdb

2

21 pentane.pdb
15 propane.pdb

107 total

We should now be within data-shell. We are going to transfer (move) file length.txt which is inside the
molecules directoy and bring it into the current directory or .
mv molecules/lengths.txt .

We can now use it locally without affecting the content of the molecules directory.

1.2 Sorting

We created file lengths.txt and we know how to see it’s content with cat.
cat lengths.txt

This reflects exactly what we saw on the display earlier and lines are printed in the same order. The first
column contains the length (number of lines) for each file.

1.2.1 Numerical

Introducing sort that can “sort lines of text files” according to the man pages.

For now our interest is to sort by numerical values of the first column. To ensure that the sorting is numerical
we add -n. The lengths.txt file will not be modified and the sorted results will be sent to the screen display
(standard output.)
sort -n lengths.txt

9 methane.pdb
12 ethane.pdb
15 propane.pdb
20 cubane.pdb
21 pentane.pdb
30 octane.pdb

107 total

The order is now changed and reflects increasing numerical values from top to bottom.

We can also save these results into a new file:
sort -n lengths.txt > num_sorted-lengths.txt

1.2.2 Alphabetical (on chosen column)

The first column (also called “field”) is the default column onto which sort will operate.

What if we wanted to sort by file name instead, for example to make the list alphabetical?

The first problem is that the name of the files are in the second column. Therefore we need to find a way to
tell sort that’s what we want to use.

Inspecting the man pages we can discover that:
man sort

-k, --key=POS1[,POS2]
start a key at POS1, end it at POS2 (origin 1)

3

Therefore we can modify our sort command and make the sorting alphabetical which is the default. We only
need to tell sort to look into the second column. We can write this as -k 2 or alternatively with --key=2
sort -k 2 lengths.txt

20 cubane.pdb
12 ethane.pdb
9 methane.pdb

30 octane.pdb
21 pentane.pdb
15 propane.pdb

107 total

2 Redirecting input

We already learned about redirecting standard output into a new file with > or appending the redirected
output into an existing file with >>.

In the same way there is a command to redirect standard input. We already know how to use the output of
one program to serve as input of the next program via piping, for example as in ls | wc.

But what if the output is already contained within a file?

We already used that in a command line cat animals.txt | wc.

However there is another way to do that with the symbol <. It is the reverse symbol of redirecting into a file.
Now we are redirecting from the file as demonstrated here:
wc < lengths.txt

7 14 138

In this way we (re)directed the content of the file lengths.txt as standard input into command wc.

3 Nelle’s Pipeline1

We can now look more closing at the data the software carprentry tutorial

3.1 Starting point: North Pacific Gyre

Nelle Nemo, a marine biologist, has just returned from a six-month survey of the North Pacific Gyre2, where
she has been sampling gelatinous marine life in the Great Pacific Garbage Patch3. She has 300 samples in all,
and now needs to:

1. Run each sample through an assay machine that will measure the relative abundance of 300 different
proteins. The machine’s output for a single sample is a file with one line for each protein.

2. Calculate statistics for each of the proteins separately using a program her supervisor wrote called
goostat.

3. Compare the statistics for each protein with corresponding statistics for each other protein using a
program one of the other graduate students wrote called goodiff.

1http://swcarpentry.github.io/shell-novice/01-intro/
2http://en.wikipedia.org/wiki/North_Pacific_Gyre
3http://en.wikipedia.org/wiki/Great_Pacific_Garbage_Patch

4

http://swcarpentry.github.io/shell-novice/01-intro/
http://en.wikipedia.org/wiki/North_Pacific_Gyre
http://en.wikipedia.org/wiki/Great_Pacific_Garbage_Patch

4. Write up results. Her supervisor would really like her to do this by the end of the month so that her
paper can appear in an upcoming special issue of Aquatic Goo Letters.

It takes about half an hour for the assay machine to process each sample. The good news is that it only
takes two minutes to set each one up. Since her lab has eight assay machines that she can use in parallel, this
step will “only” take about two weeks.

The bad news is that if she has to run goostat and goodiff by hand, she’ll have to enter filenames and click
“OK” 45,150 times (300 runs of goostat, plus 300x299/2 runs of goodiff). At 30 seconds each, that will
take more than two weeks. Not only would she miss her paper deadline, the chances of her typing all of those
commands right are practically zero.

3.2 Checking gyre data files

Nelle has run her samples through the assay machines and created 1520 files in the north-pacific-gyre/2012-07-03
directory. As a quick sanity check, starting from her home directory, Nelle types:
cd north-pacific-gyre/2012-07-03
wc -l *.txt

300 NENE01729A.txt
300 NENE01729B.txt
300 NENE01736A.txt
300 NENE01751A.txt
300 NENE01751B.txt
300 NENE01812A.txt
... ...

Now she types this:
wc -l *.txt | sort -n | head -n 3

240 NENE02018B.txt
300 NENE01729A.txt
300 NENE01729B.txt

It seems that one of the file has only 240 lines rather than 300. So it’s 60 lines shorter! When she goes back
and checks it, she sees that she did that assay at

8:00 on a Monday morning — someone was probably in using the machine on the weekend, and she forgot to
reset it. Before re-running that sample, she checks to see if any files have too much data:
wc -l *.txt | sort -n | tail -n 5

300 NENE02040B.txt
300 NENE02040Z.txt
300 NENE02043A.txt
300 NENE02043B.txt

5082 total

So it all looks OK, there are not files with more than 300 lines. But the second file from top has a Z in
its name while her samples should only be marked A or B. By convention in her lab files marked Z indicate
samples with missing information.

Are there any other files with Z in the list?
ls *Z.txt

NENE01971Z.txt NENE02040Z.txt

5

Note: The ls command only looks for files that have a Z before .txt which makes the command more specific
than say ls *Z* for example.

Sure enough, when she checks the log on her laptop, there’s no depth recorded for either of those samples.
Since it’s too late to get the information any other way, she must exclude those two files from her analysis. She
could just delete them using rm, but there are actually some analyses she might do later where depth doesn’t
matter, so instead, she’ll just be careful later on to select files using the wildcard expression *[AB].txt. As
always, the * matches any number of characters; the expression [AB] matches either an ‘A’ or a ‘B’, so this
matches all the valid data files she has. We will explore these expression shortly.

4 Pattern recognition: grep

Pattern finding can be simple or complex. We already used pattern matching and finding when listing files
with wild card * or ? or [AB]. This is a vast subject but knowing a few commands is useful in daily life.

Most of the time pattern matching is useful to find information when files are large (contains thousands of
lines) or there is a large number files (files have few lines but there are thousands of files.)

For these exercises we’ll use the files at hand, but the power scales up to large numbers of files and/or data
size.

The general shell program for pattern recognition is grep defined in the man pages as file pattern searcher.
DESCRIPTION

The grep utility searches any given input files, selecting lines that
match one or more patterns.

4.1 Simple text pattern

Here are a few simple examples:

Select line(s) containing patern Ser inside file listing amino acids:
grep Ser data/amino-acids.txt

Serine Ser

The pattern is case-sensitive so the command grep ser data/amino-acids.txt would yield no results. Of
course, like most commands we can add a flag (-i) to make the search case insensitive:

In that case the command would work:
grep -i ser data/amino-acids.txt

Serine Ser

Of course all the power of Unix is at our fingertips and we can “pipe” commands as well.

One useful thing to do sometimes is to find a pattern but remove the corresponding entries. In the next
example we’ll first look for pattern glu making it case insensitive.
grep -i glu data/amino-acids.txt

Glutamic acid Glu
Glutamine Gln

Then we’ll want to remove the entries containing the word acid. To remove a pattern we use the flag -v.

6

grep -i glu data/amino-acids.txt | grep -v acid

Glutamine Gln

The word need not be complete (e.g. just tamic acid.) And if there are blank spaces within the pattern
then the pattern needs to be placed within quotes:
grep -i glu data/amino-acids.txt | grep -v "tamic acid"

Glutamine Gln

4.2 Regular expressions

The command grep owes its name to different possible acronyms4:

• “global regular expression print”
• “global regular expression parser”
• “get regular expression processing”

All of them refer to “regular expression” sometimes also called regexp or regex.

A regular expression constitutes a language to represent patterns, from simple to very complex.

One regular expression used above was [AB] used in *[AB].txt meaning match any file that contains the
letters A or B.

Let’s try this method to search the amino acids file. We know that the first letter is uppercase so the following
command will list lines of amino acids that contain either I or L:
grep [IL] data/amino-acids.txt

Isoleucine Ile
Leucine Leu
Lysine Lys

In that case [IL] is a regular expression as the pattern only needs to match one of the letters, not both.
Contrast this with the following command. If we remove the brackets then it is a simple two letters text
pattern and there will be no match:
grep IL data/amino-acids.txt
grep -i IL data/amino-acids.txt

The pattern can be constructed with more than just letters.

Exercise: what is the meaning of the command:
ls -F | grep -v '[/@=|]'

What is it’s output? ______________________________

4.3 Which files contain a given pattern?

We can also ask grep to check all files for a specific pattern. This will generate a list for each line of each file
that contains that pattern.

The directory creatures contains files with DNA sequence for two fantastic creatures: basilisk and unicorn.
Do any one of the contain the pattern ACGT exactly?

4http://www.acronymfinder.com/GREP.html

7

http://www.acronymfinder.com/GREP.html

grep ACGT creatures/*

creatures/basilisk.dat:ACGTGGTCTA
creatures/unicorn.dat:ACGTGGTCTA
creatures/unicorn.dat:ACGTGGTCTA

We can note that the output is the file name (perhaps with a partial path) followed by a colon (:) and the
line that matched the pattern. There is no space between the file name and the matched line, only the colon.
Below we’ll see a useful method to separate the two entities.

5 Streaming editor: sed

As we now know and understand, the standard output stream can go directly to the screen or be “captured”
into a file or “piped” as standard input to another program.

If all goes well, the output of program one becomes the perfect output of program two. However, sometimes
a little “tweaking” of the data can be useful. Enters sed the stream editor.

sed can use regular expressions and is very powerful. We’ll see brief example of substitution to illustrate the
streaming dynamic.

We noted that the the grep results were the file name, a colon, and the file matching the pattern. Let’s use
sed to “separate” the 2 items by simply replacing the colon : with a blank space ‘ ‘.

To do this we’ll use the s substitute command of sed that declared a pattern to find on each line (the colon),
and what it should be substituted with (a white space) done globally on all lines (trailing g in the command).
All has to be encapsulated within quotes:
grep ACGT creatures/* | sed 's/:/ /g'

creatures/basilisk.dat ACGTGGTCTA
creatures/unicorn.dat ACGTGGTCTA
creatures/unicorn.dat ACGTGGTCTA

No big deal we only have 3 lines and it would have been easy to do that by hand. . .

We could also use sed to remove the name of the creatures folder wihin the path for a cleaner output.
However, since there is a / within the path name and we also use / to separate the various parts of the
command we need to “escape” the forward slash / of the pathname with a backslash \:
grep ACGT creatures/* | sed 's/creatures\// /g'

basilisk.dat:ACGTGGTCTA
unicorn.dat:ACGTGGTCTA
unicorn.dat:ACGTGGTCTA

6 Editing standard output: cut

There are other methods to edit the streaming standard output. We just learned about sed but there are
others. Here we’ll quiclky learn about cut that can “slice” columns in a table.

We learned above that we need to “get rid of” the column of matched lines or we need to only grab the first
column. . . This is the perfect job for cut. The man pages short description is: cut out selected portions of
each line of a file.

8

We can use the fact that there is a : colon delimiter between the file name and the matched lines and tell
cut to find and cut the stream at that delimiter into two columns (or fields) and we can ask to see only the
first column (field.)
grep ACGT creatures/* | cut -d : -f 1

creatures/basilisk.dat
creatures/unicorn.dat
creatures/unicorn.dat

We can also remove the name of the directory as before:
grep ACGT creatures/* | cut -d : -f 1 | sed 's/creatures\// /g'

basilisk.dat
unicorn.dat
unicorn.dat

Following with the previous example lets now change the four letters pattern ACGT to a shorter pattern ACG
of three letters. We can expext to match more lines and we can count them:
grep ACG creatures/* | wc

40 40 1388

What if there were 100s or 1000’s matches?

For this we could use the sorting command sort that we already know and add the flag u to keep only unique
entries.
grep ACGT creatures/* | cut -d : -f 1 | sed 's/creatures\// /g' | sort -u

basilisk.dat
unicorn.dat

This is indeed a very sophisticated command line with 4 command and 3 pipe symbols!

Thanks to the streaming of the data as standard input and output we were able to ask each command to
accomplish a small task and pass the results to the next task. There was no need for programming a special
software to accomplish what we wanted.

Note: the command uniq can play the same role as sort -u. The command could be written again as:
grep ACGT creatures/* | cut -d : -f 1 | sed 's/creatures\// /g' | uniq

basilisk.dat
unicorn.dat

Exercise: If we make the pattern only AC how many lines do you get?
Without unique sorting:__________________
With unique sorting:_____________________

7 Character translator: tr

tr is a very useful utility that can help with tedious tasks, even with non visible characters
DESCRIPTION

The tr utility copies the standard input to the standard output with substitu-
tion or deletion of selected characters.

9

7.1 DNA into RNA

A simple example is to change DNA into RNA for example to have an RNA version of the unicorn.dat file.

But we have another problem: the file starts with a header of 3 lines. We may not care about that, but it
would be nice to not change the words of the header.
head -5 creatures/unicorn.dat

COMMON NAME: unicorn
CLASSIFICATION: equus monoceros
UPDATED: 1738-11-24
AGCCGGGTCG
CTTTACCTTA

We can make a copy of the header into a temporary file which can be used later for example. Here we only
get the first 3 lines and send them into a file:
head -5 creatures/unicorn.dat > u_header.txt

OK. We copied the first three lines into a separate file, BUT the header is still present in the original file.
We’ll need to find a way to remove them “on the fly” within the standard input/output stream, and for this
we can use sed again. To remove just the first line the command would be sed 1d but to remove the first
three line the command would be sed 1,3d.

We can test all this and pipe the result into the head program. We could make the command “linear” with
the cat command so that all the commands would go from left to right:
cat creatures/unicorn.dat | sed 1,3d | head -5

However, we learned the input redirect < and that is more efficient to simply tell sed to get it from there.
In this case it makes little difference, but on a large number of very large files it could make a difference of
minutes, hours or even days!

The command would then be as follows, which in plain English can be read as: “Send the content of file
unicorn.dat contained within the directory creatures to the program sed which will remove lines 1 through
3 and send the result to head for final display on the screen.” (The “difficulty” here is that the command first
goes right to left - sending to sed - and then goes left to right sending to head.)
sed 1,3d < creatures/unicorn.dat | head -5

AGCCGGGTCG
CTTTACCTTA
AAGCCGAGGG
GGGTGGTACG
CCGAACATAA

To continue, we now invoque tr to translate DNA into RNA by changing the T into U. Again, at the end we
collect into head to not print the complete result:
sed 1,3d < creatures/unicorn.dat | tr 'T' 'U' | head -5

AGCCGGGUCG
CUUUACCUUA
AAGCCGAGGG
GGGUGGUACG
CCGAACAUAA

OK it works. But, as Mr Colombo (from the TV series) always asked “just one more question” we would
now like to know the sequence length, not of one line but of the entire sequence (assuming it is a contiguous
sequence such as an mRNA for example.)

10

Let’s try on one line to see what we get:
sed 1,3d < creatures/unicorn.dat | tr 'T' 'U' | head -1 | wc

1 1 11

We see that the length of “characters” (the third number) is in fact 11 and not 10 if we count the bases by
hand!

Why is that ?

It’s because each line contains a hidden “newline” character which can be written as \n and is counted in the
process.

For one line or two it’s OK, we can do some math in our head and remove 1 or 2 but what about 100s or
1000’s. So, we call tr to the rescue and ask it to remove (delete) the newline character:
sed 1,3d < creatures/unicorn.dat | tr 'T' 'U' | head -1 | tr -d '\n' | wc

0 1 10

We should now see the exact number of bases within that one line: 10.

We also note that there are 0 lines as newline was never seen so counting never started. . .

We can now apply the command to the whole sequence: We remove the first 3 lines so they are not counted
as sequence. Then we change T to U but that does not change numbers, then we delete new lines and finally
count. So the command is the same as above, we just remove the head part:
sed 1,3d < creatures/unicorn.dat | tr 'T' 'U' | tr -d '\n' | wc

0 1 1600

Exercise: what would be the incorrect number of bases if we did not remove newlines \n?

From this point we could reconstruct a complete file with the saved header in 2 steps:

1. rename the header to e.g. unicorn_rna.dat. Or we can recreate what we need from scratch!
2. append the streaming output of RNA at the end of that file with >>

Optionally we can then move the new RNA file into the creatures directory.
Step 1: create a new file with just the first 3 lines of the DNA version:
head -3 creatures/unicorn.dat > unicorn_rna.dat

Step 2: we append output stream to the file:
sed 1,3d < creatures/unicorn.dat | tr 'T' 'U' >> unicorn_rna.dat

We move the file down one directory:
mv unicorn_rna.dat creatures

Note: The last command moves the file into a directory. The directory name could be written also as
./creatures or even ./creatures/.

8 Loops5

Loops are key to productivity improvements through automation as they allow us to execute commands
repetitively.

5http://swcarpentry.github.io/shell-novice/05-loop/

11

http://swcarpentry.github.io/shell-novice/05-loop/

8.1 Variables

Before we dive into loops we need to learn or review the notion of variables.

A variable is a symbol or name that stands for a value. One way to think about it is that of a container: a
glass can contain water, wine or juice. In that case glass would be the variable name and wine, water, and
juice would be possible values for that variable.

In loops, we’ll use a variable, a word or even just a letter, and we’ll make it a variable by adding a $ to its
name.

Let’s see a simple example: we want to get every file in a folder, list the file and check the first line.

Figure 1: The glass content can vary. The glass is the variable, the content is the variable value.

Figure 1.

Continuing with this analogy:

If we write glass then it is the word glass.

If we glue a $ to glass then $glass means the content or current value of the variable glass and depending
on the situation it could be wine, water, or juice for example.

Let’s try this: we will create a variable called glass and give it various values. We can use the command
echo to see what the variable values are.

The command echo will just print back whatever it is given, except in the case of a variable precedeed by a
$. Since we don’t have a variable defined yet, we can just test the echo command:
echo glass

glass

First we define a variable glass and for this we need the command export to actually export that variable
into the shell:
export glass=water
echo glass
echo $glass

The echo commands will create the following output:

glass
water

Note the difference afforded by adding the $.

We can illustrate this concept with the following figure, showing how the container (glass, the variable
name) remains the same while the content (water, wine, juice, the variable value) changes and can be called
by $glass.

12

Figure 2: Separating the container and the content: ‘glass’ is the container ‘$glass’ is the content and can
vary.

13

Figure 2.

Exercise: give other values to glass with export and then check the result of $glass with echo.
(Hint: multi-word values have to be in quotes, for example “cold water”.)

8.2 For loop

A for loop simply takes a list of files and does something with them. We use a variable to designate the file
names in succession.

We can do or apply any command to the file as it is named by the variable as we would if we took the files
one by one and applied that command “by hand”. To keep it simple let’s just use ls as the action we want
to do to the file.

Note: As soon as the shell sees the for command it will know it is a loop and the prompt will change from $
to > until we are done.

8.2.1 Loop on files

Here we use the variable f simply because it is the first letter of the word file but we can use any letter or
word we wish.

Therefore f will be the glass that will be filled successively with the name of each file in a list provided by
*.txt. Thefore $f will represent the name of each file in the list until the end of the list.

Here the prompts are added for clarity. Note the change from$ to > after the start of the for loop:
$ cd data
$ for f in *.txt
> do ls $f
> done

amino-acids.txt
animals.txt
morse.txt
planets.txt
salmon.txt
sunspot.txt

Note: if you use the up arrow to recover the previous command it will be shown as a single line for the for
loop separated by semi-colons (;.)
for f in *.txt; do ls $f; done

OK, this very fancy loop does exactly the same as ls *.txt but the power comes from the fact that now, we
can add more commands.

For example let’s do this:

• call each .txt file
• print its name
• show the very first line
• until all files are done

We can even do that from a higher directory level if we wish!

Let’s also change f to file just to show we can.

The commands are slightly indented for clarity (this time the prompt is not printed) but indentation is
optional here.

14

for file in data/*.txt
do
ls $file
head -1 $file

done

data/amino-acids.txt
Alanine Ala
data/animals.txt
2012-11-05,deer
data/morse.txt
0 -----
data/planets.txt
"Planet Name","Pl. Mass","Pl. Radius","Pl. Period",
data/salmon.txt
coho
data/sunspot.txt
(* Sunspot data collected by Robin McQuinn from *)

We could even modify the loop slightly to remove the trailing directory name remembering to “escape” the
trailing slash after data/ with a backslash. We can also add a blank line between each output for reading
clarity:
for file in data/*.txt
do
ls $file | sed 's/data\///g'
head -1 $file
echo "" # blank line

done

amino-acids.txt
Alanine Ala

animals.txt
2012-11-05,deer

morse.txt
0 -----

planets.txt
"Planet Name","Pl. Mass","Pl. Radius","Pl. Period",

salmon.txt
coho

sunspot.txt
(* Sunspot data collected by Robin McQuinn from *)

The word used after for to serve as variable can be any word we wish. So far we used f and file
and we only need to add $ when we want to extract the value of the variable.

In the same way, the list that follows in was provided by an ls command but an explicit list of file names,
just separated by blank space would work too. For example if we only wanted to apply the loop to the 2 files
planets.txt and sunspot.txt we would write
for file in data/planets.txt data/sunspot.txt
do

15

ls $file | sed 's/data\///g'
head -1 $file
echo "" # blank line

done

planets.txt
"Planet Name","Pl. Mass","Pl. Radius","Pl. Period",

sunspot.txt
(* Sunspot data collected by Robin McQuinn from *)

8.2.2 Loop on number

The variable need not necessarily be a file name. Here is a simple example where the variable called mynum is
simply a number

In the loop we use the command expr (evaluate expression) to add 100 to the variable number.

We add " " to create a blank space. All three echo commands are flagged with -n to prevent a new line and
therefore all three commands within the loop are printed on a single line:
for mynum in 0 1 2 3
do
echo -n $mynum " "
echo -n $nymum plus one hundred is equal to:
expr $mynum + 100

done

0 plus one hundred is equal to:100
1 plus one hundred is equal to:101
2 plus one hundred is equal to:102
3 plus one hundred is equal to:103

8.2.3 Loop for backup

One example provided in the tutorial is to backup current versions of specific files. This example provides an
illustration to the fact that the $ marker attached to the variable name can be embedded within a new file
name. For this to work properly we need to be within the creatures directory. To see but not execute the
command we can ask echo to print to the screen what the loop would do:
cd creatures
for filename in *.dat
do

echo cp $filename original-$filename
done

This loop would replace three cp commands but that depends on the number of files present ending with
.dat.

To have the loop do the actual copying we would simply remove the word echo and only keep cp.

Warning: next time this command is run we will have an original-original file and then next
time an original-original-original file etc. Therefore this is not a very good loop!

In our caset there are only 2 or 3 files starting with either b or u so we could change the loop with a simple
regular expression to take advantage of this fact: simply add [bu] in the file selector:

16

cd creatures
for filename in [bu]*.dat
do

echo cp $filename original-$filename
done

9 Nelle’s Pipeline: Processing Files6

Here is a brief summary of Nelle’s pipeline. You can read the complete story on the referenced software
carpentry web page.

First she goes to where some of the data files are:
cd north-pacific-gyre/2012-07-03

Depending where you are it might be best to use: cd ~/Desktop/data-shell/north-pacific-gyre/2012-07-03/

She is getting ready to process a large number of files andfile with a Z cannot be used, the “good ones” can
only contain A or B and can be selected with the regular expression [AB].

On these files she will need to apply a software written by her boss called goostats and rewrite the results
into a new file. (Warning: a bug in the goostats program: if a new file is not provided the original data file
will be overwritten to contain nothing!). There is no screen output provided by goostats and she decides to
echo the file name being processed so she can see progress.

The final command will look like this:
for datafile in *[AB].txt
do echo $datafile
bash goostats $datafile stats-$datafile
done

When she runs her program now, it produces one line of output every five seconds or so:

NENE01729A.txt
NENE01729B.txt
NENE01736A.txt
...

9.1 Nested loops

Nested loops are a loop within a loop.

Exercise: Nested loops (verbatim from tutorial) Suppose we want to set up up a directory structure
to organize some experiments measuring the growth rate under different sugar types and different
temperatures. What would be the result of the following code:

for sugar in fructose glucose sucrose
do

for temperature in 25 30 37 40
do

mkdir $sugar-$temperature
done

done

6http://swcarpentry.github.io/shell-novice/05-loop/

17

http://swcarpentry.github.io/shell-novice/05-loop/

10 Scripts7

All commands can placed into a simple text file, and that text file can become a script!

With the power of loops, pipes and redirect powerful scripts can already be written.

The software carpentry page details the process of creating a simple script to extract the middle of any plain
text file using the combination of head, tail, pipe | and the use of variables.

Please refer the that web page to complete these exercises.

10.1 ADVANCED: Additional info

The web page shows how to create useful scripts allowing users to specify e.g. the name of files to be used
and other arguments.

All scripts are run on the command line with bash script_name (and sh script_name would be an
alternative command.)

However it is sometimes useful to make the file an “executable” so that we don’t need to add the bash or sh
command to execute it.

This is accomplished with the command chmod to change the operating mode to add the x in the privilege
list.

If you already followed the web page exercises and created a script called middle.sh you can give it execute
privilege to yourself only (the user) with:
chmod u+x middle.sh

In that case a listing of the file will show:

-rwxr--r-- 1 YOU AD\Domain Users 28 Mar 29 10:34 middle.sh

To add the privilege to anyone, we can use the combined group a that contains user, group and others:
chmod u+a middle.sh

In that case a listing of the file will show:

-rwxr-xr-x 1 YOU AD\Domain Users 28 Mar 29 10:34 middle.sh

To make use fo the software within the current directory the command would be using the ./ notation
to specify its location within the current directory:
./middle.sh

To make use of the software withouth the bash or sh command as an executable without the need to specify
the location (path) of the file it is necessary to place the software in a directory where the operating system
“knows” that executables are normally present. However, most of these directories are usually “protected” by
“admin” password and for a good reason!

The alternative is to create a directory e.g. within your own home directory, typically called bin into which
scripts could be placed.

Then, it would be necessary to “declare” where the directory is located by modifying a special variable called
PATH that is currently holding the name of known executables. Since PATH is a variable, we can find it’s value
with:
echo $PATH

7http://swcarpentry.github.io/shell-novice/06-script/

18

http://swcarpentry.github.io/shell-novice/06-script/

/usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin

To add your own directory to this variable we can use the export command. Absolute path is necessary.

Assuming the bin is located in the home directory /Users/YOU we would add the directory first.

Warning: to not loose the existing information it is necessary to append the value of $PATH as it was before:
export PATH=/Users/YOU/bin:$PATH

We’ll now have an updated PATH:
echo $PATH

/Users/YOU/bin:/usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin

10.1.1 First line

In addition, bash script can have the FIRST LINE modified to contain the line:
#!/bin/sh

or
#!/bin/bash

This is to specify that the script is indeed a bash command file.

The first line can be modified to reflect the language of the script, for example if the script was written in
Python 2, the first line could be #!/usr/bin/python.

11 Summary

11.1 Concepts

Concept Definition
Wild card Replace a zero to many characters with *
Loop Repeat many similar commands
Path Path to an executable as a variable (PATH)

11.2 Variables

Concept Definition
PATH Defines the location of executables. echo $PATH. change with export.

11.3 Symbols

Table 3: Symbols and filters

Symbol Meaning
* Wild card: replace zero to any number of characters
? Replace a single character

19

Symbol Meaning
< Redirect content of a file as standard input.
[AB] Match file names containing either A or B in *[AB]*

11.4 New commands learned:

Table 4: New commands in order of appearance in the text

Command man page definition and/or example
sort sort lines of text files.
grep file pattern searcher.
sed stream editor. Subsitute text. Remove lines e.g. sed 1,3d
cut cut out selected portions of each line of a file.
tr translate characters (substitute even newline).
echo repeats given arguments the standard output. -n to suppress newline
export Creates and gives value to a variable.
expr evaluate expression.
for . . . in . . . loop contruction

20

	Pipes and Filters
	Wild cards
	Sorting

	Redirecting input
	Nelle's Pipeline
	Starting point: North Pacific Gyre
	Checking gyre data files

	Pattern recognition: grep
	Simple text pattern
	Regular expressions
	Which files contain a given pattern?

	Streaming editor: sed
	Editing standard output: cut
	Character translator: tr
	DNA into RNA

	Loops
	Variables
	For loop

	Nelle's Pipeline: Processing Files
	Nested loops

	Scripts
	ADVANCED: Additional info

	Summary
	Concepts
	Variables
	Symbols
	New commands learned:

