

Survival

command line
for Text Terminal workshops

ABSTRACT
This short workshop will provide hands-on
overview of commands in a text Terminal.
We'll review the handful of commands that
are most useful.
JEAN-YVES SGRO

:14
 The Biochemistry Computational Research Facility (BCRF) provides access to

a computational computer cluster and hands-on tutorials

Image credits:

Wingding font icons

Workbook – © 2019 – All Rights Reserved

Corresponding author: Jean-Yves Sgro - jsgro@wisc.edu -
All rights reserved.

Instructor:

 Jean-Yves Sgro, Ph.D

Distinguished & Data Scientist II.
Biotechnology Center & Biochemistry Dept.

Biochemistry Office:
 433 Babcock Drive, room 201
 Madison WI 53706
Email: jsgro@wisc.edu

 1

Survival command-line for Biologists
Jean-Yves	Sgro	

December	03,2019	

INTRODUCTION	...	3	

Learning	objectives:	...	3	
TERMINAL	AND	SHELL	..	5	

Text	terminal	..	5	
The	shell	..	5	
Shells	...	6	

SET-UP	..	7	
WORKING	IN	TERMINAL	..	8	

Username	..	8	
Home	...	8	
Prompt	...	9	
Preferences,	$	and	Variables	..	9	
Home	and	username	revisited	..	10	
Who	am	I	..	10	
Where	am	I	looking	...	11	

HARD	DRIVE:	WHERE	THINGS	ARE	...	12	
Summary	so	far:	..	13	

DIRECTORIES	..	15	
New	directories	...	15	
Path	..	18	
Home	again	...	18	

FILES	..	19	
Exploring	file	contents	...	19	
File	editing	..	21	
Compressed	web	files	..	22	
Section	summary:	...	24	

STREAMS	AND	PIPES:	KEY	CONCEPTS	..	25	
Standard	input	and	output	..	25	
Data	stream	and	pipes	...	26	
Redirection	..	27	
Pipes	...	28	

REMOTE	CONNECTION	...	30	
SUMMARY	...	31	

Concepts	...	31	
Symbols	...	31	

 2

Commands	learned	or	mentioned:	...	32	
RESOURCES	..	33	

REFERENCES	..	34	
	

	

 3

Introduction
This short tutorial/workshop is meant to review and understand basic
command-line as they are typed on a text terminal.

This specific workshop will focus on Macintosh Terminal, but most
commands would also work on all Unix-style operating system (Linux, or
Windows with added software.)

The goal is to review the most useful commands in order to operate the
terminal for later workshops including those focused on Docker.

Learning objectives:
The main objective is to become at ease with the command-line to perform
routine tasks:

• Open a Terminal
• Understand the computer organization (file structure and “path”)
• Create, delete and navigate directories
• Create, delete, explore and edit text files
• Download Internet data files
• Apply key concepts (standards and streams) to tasks

 4

digital VT100 text terminal

DEC VT100 terminal at the Living Computer Museum (apparently connected to the museum's DEC PDP-
11/70). Introduced in August 1978 by Digital Equipment Corporation (DEC)

Jason Scott - Flickr: IMG_9976 CC BY 2.0

Source: https://commons.wikimedia.org/wiki/File:DEC_VT100_terminal.jpg

 5

Terminal and Shell
Text terminal
In the early 1990’s “dumb terminals” were still used to access a remote,
shared computer. The terminal was called “dumb” because it did not
contain any operating system. The digital VT100 (“VT100” 2019) was a very
popular terminal:

In contrast, a “personal computer” is an “all-in-one” that uses terminal
emulation software within itself. On a Macintosh it is called Terminal and,
on a Windows PC cmd or PowerShell.

These are emulation i.e. they mimic what the physical terminal used to do:
let the user “talk” to the computer with typed commands. These
commands are in the “shell language” that resembles English more than
“machine language” made of binary or hexadecimal numbers.

The shell
The shell is both a language and a software that takes commands from the
keyboard (user input) and transmits them to the “kernel,” the part of the
operating system that can also “talk” to the hardware. For example, it is the
kernel that will instruct the hard drive to make physical changes to record
a file you are writing and saving.

This is perhaps why the shell is often represented surrounding both
hardware and kernel.

 6

The shell: an intermediate between user and OS.
Figure 1.

Shells

The most current shell is called bash (Bourne Again SHell, an enhanced
version of the original sh by Steve Bourne.) This is the default shell on most
Linux systems and on Macintosh until now.

Wikipedia Note1: The newest MacOS (Catalina) now uses the Z shell which is
an extended Bourne shell with many improvements, including some
features of bash, ksh, and tcsh shells.

M Warning: shell commands are CaSE SenSItive!

1 https://en.wikipedia.org/wiki/Z_shell

shell

kernel/OS

hardware

user

 7

Set-up
We’ll use the iMacs form Biochemistry laboratories room 2012.

To get started we first need to open a text terminal as detailed below.

PTASK:

Do one of the following:

1. Find the Terminal icon in the /Applications/Utilities directory.
Then double-click on the icon and Terminal will open.

2. OR use the top-right icon that looks like a magnifying glass (Spotlight
Search,) start typing the word Terminal and press return. Terminal
will open.

2 These commands would also work on a Windows system with added software e.g.
Ubuntu for Windows, see installation at
https://tutorials.ubuntu.com/tutorial/tutorial-ubuntu-on-windows

 8

Working in Terminal
Remember that Terminal is a software version of what used to be a physical
hardware. Terminal itself is “dumb” and only allows you to “talk” to the
computer operating system through the shell with the shell language
somewhat similar to English.

Username

You will need to login the iMac with your NetID and a
username will be created on this Mac is you have not
logged in it before.

Home

When you start Terminal you are immediately connected
internally with the operating system (OS,) here it is
MacOS, a derivative of Unix, an OS developed in the
1960’s with very powerful features that we’ll discover
below.

When the connection is established, you “land” in the
“home directory” i.e. the area on the disk reserved for
your username (these computers can have multiple -even
concurrent- users.)

m�

H

 9

In most modern Macintosh, Windows and Linux systems the disk areas
reserved to users are defined in a similar way as a “high level” directory.
We’ll see a bit later how to know exactly where this disk space is located.

Prompt
When the terminal starts your username will appear
together with the computer name followed by a $. This is
called the prompt and simply signals that the terminal is
ready to accept shell commands. For example, my prompt
looks like this:

Last login: Wed Nov 27 08:57:02 on ttys000
BIOCNB-01014M:~ jsgro$

BIOCNB-01014M is the name of the computer I am using and jsgro is my
username.

On this line we’ll type shell commands.

Preferences, $ and Variables
In most modern software you’d find a menu options
called Preferences… where you can change predefined
choices. In the same way, there exists preference setting
for the shell. They are called “environment variables” and
can sometimes play an important role.

Variables have defined names, usually in uppercase, and
the $ symbol is also used to printout the value of a
variable.

For example, we can check the name of the shell that is running in
Terminal with the shell command echo and the specific variable
associated with it: SHELL. By default, echo will simply repeat (print back
on screen) what is typed on the keyboard, but with a preceding $ to the
typed word echo will print the value of a variable itself. This is best
understood by practice as suggested below.

Note: without the $ the program echo simply repeats what it is given.

:

U

 10

PTASK: Run the following commands:
echo SHELL

Answer: _________________________________

echo $SHELL

Answer: _________________________________

In the same way what is the output of the following commands?

echo $USER

Answer: _________________________________

echo $HOSTNAME

Answer: _________________________________

echo $HOME

Answer: _________________________________

Home and username revisited

Who am I
Since we cannot see the directories in a graphical way, it
is very useful to start with understanding where we
“land” when we first launch Terminal and where we are
“looking” inside the computer hard drive at any moment.
The following commands will give us some clues about
this:

PTASK: Run the following command:

whoami

Answer: _________________________________

This whoami command with an “existential feeling” used to be very useful
when terminal stations were shared and someone forgot to log-off. In fact,

�

 11

in modern shells, this information is also found as part of the prompt as we
have seen before.

Where am I looking

PTASK: Run the following command:
pwd

Answer:_________________________________

This is an important command that shows the present
working directory.

In this case it is our “home” directory as we just arrived
on the system.

1

 12

Hard drive: where things are
Your home directory is just one area of the hard
drive, that can be shared by the home directory of
other users as illustrated below.

This type of organization is sometimes called an
“inverted tree.” The top level is called root and it
branches out into (contains) other directories,
subdirectories, and files.

Hard drive organization.

Figure 2.

B

 13

Important notes:

• The home directory shows a path (green arrows and grayed folder)
from the very top level of the computer system denoted / and called
the “root.” (See more on path below.)

• The separator between directory names is also the forward slash /

• The complete home directory path can also be replaced by the single
symbol ~ (more on this later.)

Summary so far:

Command Definition
ssh secure shell connection software
$ shell prompt: awating for command
pwd print working directory
~ equivallent to home directory path
/ root and separator symbol

 14

mkdir
cd
mv
rmdir
ls -a

 15

Directories

Directories as like file cabinets.

In this section we’ll learn to create, delete and
navigate between multiple directories. We’ll also
learn to list and delete files.

New directories
Creating separate directories for various projects is
the best way to organize your work (and text files,
data files, sub-directories etc.) On your laptop you
could easily create a directory with the mouse. But
while working in Terminal, it is sometimes simpler
to just use the mkdir shell command to “make a
directory” in the location we are looking, currently
our home directory.

L Important Notes:

• Avoid blank spaces in directory and file names. (It is possible but
makes them harder to handle.)

• Names are case-sensitive: A is not the same as a. For example, Myfile is
not the same as myFile.

5
1

 16

PTASK: Run the following commands:

First, we create a directory:

mkdir dir01

Did I hear OOPS ?

Perhaps the name should be something else, perhaps myproject01?

At this point there are 2 solutions:

1. rename it with the shell mv (move) command:
– mv dir01 myproject01

2. delete it with shell command rmdir (remove directory) and create a
new one again:

– rmdir dir01
– mkdir myproject01

PTASK: Choose one method so that you now have myproject01
available to you.

OK - now we have a directory to work with.

To work within this myproject01 directory we have to move our focus into
that directory. For this we use the shell command cd that means “change
directory.”

cd myproject01

We can then verify that is where we have now landed with this useful shell
command that we have already learned:

pwd

We should now be within the myproject01 directory which is empty.
However, as part of the operating system, two invisible files are created
that are an integral part of the directory. We can see them by adding -a to
the ls command to list all file:

 17

ls -a

What do you see?

Answer: ___ ____

These two items are the symbolic representation of the “current directory”
(dot) and the “parent directory” (dot dot).

Notation Spoken Name Definition
. “dot” Current directory

.. “dot dot” Parent directory: directory “above” containing
the “current” directory.

We will use this knowledge in the following section.

Current (dot) and parent (dot dot) directories.

Figure 3.

Note: If you use the command ls -aF instead you will see the following
result:

./ ../

The trailing / signifies that these 2 items are in fact folders: the current one
and the parent one.

 18

Path

The existence of . and .. provides that we can
specify the location of a file on the system with
either an absolute or a relative path.

An absolute path is a description starting from / (root) which is therefore
complete and unambiguous since there is only one root within the
computer file organization.

For example, in the hard drive organization figure above the absolute path
to File is: /Users/jsgro/File.

A relative path is a description starting from afolder other than root.

Examples:

• pwd provides an absolute path starting from the very beginning of the
root with /.

• ls .. is a command that will list files from the parent directory relative
to our current directory location.

Home again

If you are “lost” on the system of course pwd can
help, but just typing cd will bring you back into your
home directory.

P

E

 19

Files
A file is a “container” of information. Some files contain
plain text and are easy to handle and explore on a text-
only terminal. More complex files contain binary
information that would display as “gibberish” on a text-
only terminal.

It is useful to name files with a filename extension, for
example .txt for a plain text file as a reminder of the
type of content.

(In addition, on most current operating systems, the
filename extension will lead the OS to show the file
graphically with a specific icon.)

Exploring file contents
In this section we’ll learn to download a file directly from the Internet,
view top and bottom portions of a text-only file, and finally to read its
content one screen at a time.

On MacOS the shell command to copy a web address curl can be used to
download files directly into the current directory. We’ll download a plain
text file listing the known chemical elements named
chemical_elements.txt. At the same time we’ll change the name of the
file into a new, simpler name: elem.txt for easier typing.

PTASK: Run the following commands: (type on a single line)
curl -o elem.txt https://static-bcrf.biochem.wisc.edu/tutori
als/unix/survival_command/chemical_elements.txt

4

 20

 curl
head
tail
rm -r
nano
cat
more

 21

Note: if you need to actually type you can use this short link instead:
tiny.cc/chemelem

Note: you can type ls to verify that the file has been transferred and that its
name is what it should be.

Now we are going to explore the content of the file.

• list the first few lines at the top of the file. The default for head is 10
lines, but we can modify that number simply. For example to see the
first 5 lines:

head -5 elem.txt

• In the same way the command tail can print the lines from the end of
the file. To see the last 3 lines of the file issue the command:

tail -3 elem.txt

Two other commands are useful:

• cat will print the whole content of the file at once, therefore making it
impossible to see the top if the file is too long. (In Windows DOS the
command would be Type.)

• more (or its newest incarnation less) will show one screen at a time.
Pressing Enter will show one more line at a time, while pressing Space
bar will show one screenfull at a time. Pressing q will quit and return to
the prompt.

Note: to remove a file use the command rm followed by the name of the file.

Note: Earlier we learned rmdir to delete an empty directory. However, to
remove a directory that is not empty, the (dangerous) command is using a
recursive method (adding -r) for example: rm -r somedirectory (-
Warning!- there is NO UNDO and this command will remove everything thus
make sure you are in the right place with e.g. pwd before issuing it!)

File editing
The ability to create your own text files is essential and the full-screen text
editor nano can be very helpful. This software can be used to open and
modify existing files, or to create new text files.

nano can open an existing file to modify its content or create a new file.
Let’s create a simple file called simple.txt containing just a few lines.

 22

cd ~/myproject01

nano simple.txt

This will open a full screen editor. Ctrl command options are shown at the
bottom of the screen:

 GNU nano 2.0.6 File: simple.txt
- - - - THIS IS THE AREA WHERE YOU TYPE TEXT - - - -
- - - - Use up, down, left, and right arrows - - - -
- - - - to navigate, NOT the mouse! - - - -
- - - - When done, type Ctrl X to exit - - - -

^G Get Help ^O WriteOut ^R Read File^Y Prev Page^K Cut Text
^C Cur Pos
^X Exit ^J Justify ^W Where Is ^V Next Page^U UnCut Tex
^T To Spell

Write some simple text, then press Control and X keys at the same time to
exit the program and write the new file to the current directory.

On exiting you may have to answer Yes or Y to the questions:

Save modified buffer (ANSWERING "No" WILL DESTROY CHANGES) ?
 Y Yes
 N No ^C Cancel

Note: The command shown as ^O for Control + O (capital letter Oh) would
write the current changes but would not close the program but stay within
the editing mode for further text editing.

Compressed web files

We learned the command curl above.

It is often necessary to download files from the
Internet. These files can also be compressed. The
following section is a short exploration on how to
handle such matters.

i

 23

The following example will download a random DNA sequence file from
the University of California at Santa Cruz (UCSC) from chromosome 4. The
web page is at
http://hgdownload.cse.ucsc.edu/goldenpath/hg19/chromosomes/

Here is the command to download file chr4_gl000194_random.fa.gz
with curl:

PTASK: Run the following commands: (on a single line)
curl -o chr4_gl000194_random.fa.gz http://hgdownload.cse.uc
sc.edu/goldenpath/hg19/chromosomes/chr4_gl000194_random.fa.g
z

Note that on Linux system there exists also the command wget (“web get”)
that can accomplish the same task. In this case the -o to specify output is
not required. wget is not standard on Macs and curl is used instead.

wget http://hgdownload.cse.ucsc.edu/goldenpath/hg19/chromoso
mes/chr4_gl000194_random.fa.gz

Note: You can also go to the short URL equivalent of the web page
https://bit.ly/2kJpA0K and then “right-click” on file
chr4_gl000194_random.fa.gz and select “Copy link”

The file is a Fasta sequence format (.fa) and is also compressed with the
gnu-zip program gzip and can be decompress by gunzip as shown with the
following command:

gunzip chr4_gl000194_random.fa.gz

Note that the suffix .gz will automatically be removed. Now the file is a
simple text file and can be explored as seen previously, e.g. with head, tail
and more.

Note: The files ending with .zip should be uncompressed with the unzip
command as these are different formats and software.

 24

Section summary:

Command Definition
mkdir create directory
rmdir delete empty directory
rm remove file
rm -r recursively remove everything within a non empty

directory
ls list content of directory. -a for all, -d for directory

etc.
mv move and/or rename file or directory
cd change directory
. current directory
.. parent directory
path Absolute start with /. Relative uses . and/or ..
TAB computer finishes tying
head show first 10 lines by default
tail show last 10 lines by default
cat type all content of file on screen
more type file content one screen at a time. Newer: less
nano text editor
curl obtain file from web address
wget obtain file from web address

 25

Streams and pipes: key
concepts
One of the reasons that Unix-like systems and its shells have withstood
Time is the inherent power of a few key concepts detailed below.

Standard input and output
Unix-like systems comprise Unix, Linux and MacOS operating systems.

• The default standard input is your keyboard.
• The default standard output is the screen

Standard output (which is printed on the screen by default) is split
between the normal output (stdout) and an error output (stderr) in case
errors are to be reported.

There are therefore three “streaming” channels for Input/Output (I/O)
labeled from zero to 2:

Understanding I/O stream numbers

Handle Name Description

0 stdin Standard input 7

1 stdout Standard output :

2 stderr Standard error :

 26

Standard Input/Output channels.

Figure 4

The above figure illustrates the standard input and output concepts.

On the top image, the keyboard (stdin) is used to enter a shell command (e.g.
list the content of a directory with ls) which creates an output. The ouput
is sent to the standard output (stdout) which is the computer screen by
default.

The bottom image further shows that the output represents 2 channels, one
for the normal output and another for error output.

Data stream and pipes
We can redefine the 3 standards above with the added notion of “stream”
as preconnected input and output communication channels Ritchie (1984),
(“Standard Streams” 2019):

• Standard input is stream data (often text) going into a program.
• Standard output is the stream where a program writes its output data.
• Standard error is another output stream typically used by programs to

output error messages or diagnostics.

One can imagine data flowing from input to process to output.

More importantly the data could be at any point redirected (hijacked) to a
different destination.

 27

Redirection
The first example is redirecting the standard output, normally destined to
appear onto the screen, into a file that will be saved onto the computer.
This is accomplished with the redirect > symbol.

As example we can create a new file called 5lines.txt based on a
previous head example above. In this case nothing will appear on the
screen and a new file will be created instead, containing what would have
been shown on the screen:

PTASK: Run the following commands:
head -5 elem.txt > 5lines.txt

We can verify that this is the case:

P

ls
cat 5lines.txt

Important Note: using the same command with > would
overwrite any existing file. To instead add to the end of the file
(append) one should use the double redirect >> instead.

One useful use of this method is the ease of creating text files without a text
editor. We can use the command cat that normally takes the content of a
file and sends it to standard output. Instead of a file we can use the
keyboard input and redirect the data into a file.

 28

cat > example.txt

Note that there is no $ prompt visible.

Here we write some text that will be saved
to a file named example.txt

Everything we write here is redirected
into the file (redirected standard output.)

We can add as many lines as we want.

BUT WHEN DONE WE NEED TO PRESS: CTRL-D
as a signal that we are done!

CTRL-D means "end of file" and is like
"closing the file", ending the redirection
and returning us to the $ prompt.

Again: CTRL + D will ends this process and return us to the $ prompt.

Pipes
The data stream issued from the process of a program can also be redirected
in a different way with the pipe symbol |. In this case the data stream from
one program coming out through standard output will be used a standard
input by the next program. Multiple processes can therefore be connected
in a single pipeline, as illustrated below:

process1 | process2 | process3 | process4

The process could be any running program that has proper standard input
and standard output compliance. As an example we can use the utility wc
(word count) to count the number of words of a data stream:

TASK:

Run the following commands:

head -5 elem.txt | wc

Answers: ___ ___ ___

 29

The three numbers represent the number of:

• lines,
• words and
• characters (including the return character.)

This other example uses the program grep to recognize a simple text
pattern, here the pattern is ron, chosen to select only the lines that contain
this pattern within any of the words on each line. The program cat sends
the content of file elem.txt into the data stream as standard input which is
then “piped” into program grep:

cat elem.txt | grep ron

Answers: B______
Answers: I______
Answers: S______

We could even string these processes in a longer pipeline where we
accomplish 3 tasks:

• send the data from elem.txt into the data stream. From cat the data
arrives as part of the standard output, which serves as standard input
to the next program grep.

• grep processes the data to recognize the pattern ron.
• finally, wc does the lines, word and character counting. The final

standard output arrives onto the screen.
cat elem.txt | grep ron | wc

Here is the result you should obtain:

 3 3 21

Of course, we could have also recuperated the final output into a file
instead!

cat elem.txt | head -5 | grep ron | wc > count_5lines.txt

 30

Remote connection
In some cases, you may want (or need) to connect to a remote computer. In
this case the remote computer is most likely to be a Linux cluster. For this
we would use the command ssh which means “Secure SHell” as all
connections and transmissions are encripted (hence secure.)

In the Biochemistry department the connection to the Linux cluster
required a NetID as well as prior authorization.

If you are authorized to connect, the command would have this form,
where myname is your NetID.

ssh myname@submit.biochem.wisc.edu

You would be then prompted to accept the connection and prompted for
your password. For further details refer to the Biochem web site.3

3 https://bcrf.biochem.wisc.edu/bcc/

 31

Summary
Concepts

Concept Definition
Standard input Default: the keyboard. Input piped data
Standard output Default: the screen display. Redirect to file or pipe
Standard error Default: the screen display.
Redirect Take standard input and send to file with > or >>
Pipe Take standard output and pass to next command as

standard input with |

Symbols

Symbols and filters
Symbol Meaning
$ Shell prompt
$ Add to variables to extract value: e.g. echo $SHELL
~ Shortcut for home directory
/ Root directory. Separator on path names
> Single redirect: sends standard output into a named file.
>> Double redirect: appends standard output to named file.
| Pipe: transfers standard output to next command/software.

 32

File descriptors
File Meaning
. Current directory. Can be written as ./
.. Parent directory. Can be written as ../
/dev/stdin Standard input
/dev/stdout Standard output
/dev/stderr Standard error

Commands learned or mentioned:

Commands learned
Command man page definition and/or example
echo write arguments to the standard output. echo $SHELL
whoami display effective user id.
pwd return working directory name.
cd change directory
ls list directory contents. ls -F, ls -a
wget grabs a file from Internet with provided web address
curl grabs a file from Internet with provided web address
unzip list, test and extract compressed files in a ZIP archive.
mkdir make directories.
mv move files. (Can rename file/directory in the process.)
cat types file onto screen (or sends to standard output.)
head display first lines of a file. Default 10.
tail display the last part of a file. Default 10
nano (Text editor) Nano’s ANOther editor, an enhanced free Pico

clone.
wc word, line, character, and byte count.
rm remove directory entries i.e. remove files. Remove non-

empty dir with rm -r
rmdir remove directories (empty dirs)
cp copy files.

 33

Resources
I have selected the following resources, but you would find many more
with a simple web-engine search.

Online resources
Name of Tutorial URL Archived
UNIX Tutorial for
Beginners

http://www.ee.surrey.ac.uk/Teach
ing/Unix/

http://bit.ly
/1pixR8C

Unix Basics https://www.ntu.edu.sg/home/eh
chua/programming/howto/Unix_
Basics.html

https://bit.ly
/2lzyYo9

Linux Tutorial https://ryanstutorials.net/linuxtut
orial/

https://bit.ly
/2lzCtuN

An A-Z of Linux –
40 Essential
Commands You
Should Know

https://www.makeuseof.com/tag/
an-a-z-of-linux-40-essential-
commands-you-should-know/

https://bit.ly
/2mJntun

UNIX Tutorial http://people.ischool.berkeley.edu
/~kevin/unix-tutorial/toc.html

http://bit.ly
/22374hN

A Practical Guide
to Ubuntu Linux:
The Shell

http://www.informit.com/articles/
article.aspx?p=2273593&seqNum=5

http://bit.ly
/1ZwILUA

Unix Tutorial http://www2.ocean.washington.ed
u/unix.tutorial.html

http://bit.ly
/1LUgiFM

Learn Unix http://www.tutorialspoint.com/un
ix/

http://bit.ly
/1YCh8ZN

Part1: Survival
guide for Unix
newbies

http://matt.might.net/articles/basi
c-unix/

http://bit.ly
/2237l4k

Part2: Settling into
Unix

http://matt.might.net/articles/settl
ing-into-unix/

http://bit.ly
/1LeFHd6

The Linux
Command Line

http://linuxcommand.org/ http://bit.ly
/223JcdO

 34

REFERENCES
Ritchie, D. M. 1984. “A Stream Input-Output System.” AT&T Bell
Laboratories Technical Journal 68 (8).
https://cseweb.ucsd.edu/classes/fa01/cse221/papers/ritchie-stream-io-
belllabs84.pdf.

“Standard Streams.” 2019. Wikipedia. Wikimedia Foundation.
https://en.wikipedia.org/wiki/Standard_streams.

“VT100.” 2019. Wikipedia. Wikimedia Foundation.
https://en.wikipedia.org/wiki/VT100.

	COVER_Survival_Command-line
	Survival_Command-line_EDIT

